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This paper concerns the development of a new Cartesian grid/immersed boundary (IB)
method for the computation of incompressible viscous flows in two-dimensional irregular
geometries. In IB methods, the computational grid is not aligned with the irregular bound-
ary, and of upmost importance for accuracy and stability is the discretization in cells which
are cut by the boundary, the so-called ‘‘cut-cells”. In this paper, we present a new IB
method, called the LS-STAG method, which is based on the MAC method for staggered
Cartesian grids and where the irregular boundary is sharply represented by its level-set
function. This implicit representation of the immersed boundary enables us to calculate
efficiently the geometry parameters of the cut-cells. We have achieved a novel discretiza-
tion of the fluxes in the cut-cells by enforcing the strict conservation of total mass, momen-
tum and kinetic energy at the discrete level. Our discretization in the cut-cells is consistent
with the MAC discretization used in Cartesian fluid cells, and has the ability to preserve the
five-point Cartesian structure of the stencil, resulting in a highly computationally efficient
method. The accuracy and robustness of our method is assessed on canonical flows at low
to moderate Reynolds number: Taylor–Couette flow, flows past a circular cylinder, includ-
ing the case where the cylinder has forced oscillatory rotations. Finally, we will extend the
LS-STAG method to the handling of moving immersed boundaries and present some results
for the transversely oscillating cylinder flow in a free-stream.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Much attention has recently been devoted to the extension of Cartesian grid flow solvers to complex geometries by im-
mersed boundary (IB) methods (see [28,39] for recent reviews). In these methods, the irregular boundary is not aligned with
the computational grid, and the treatment of the cut-cells, cells of irregular shape which are formed by the intersection of the
Cartesian cells by the immersed boundary, remains an important issue. Indeed, the discretization in these cut-cells should be
designed such that: (a) the global stability and accuracy of the original Cartesian method are not severely diminished and (b)
the high computational efficiency of the structured solver is preserved.

Two major classes of IB methods can be distinguished on the basis of their treatment of cut-cells. Classical IB methods
such as the momentum forcing method introduced by Mohd-Yusof and co-workers [41,14], use a finite-volume/difference
structured solver in Cartesian cells away from the irregular boundary, and discard the discretization of flow equations in
. All rights reserved.
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the cut-cells. Instead, special interpolations are used for setting the value of the dependent variables in the latter cells. Thus,
strict conservation of quantities such as mass, momentum or kinetic energy is not observed near the irregular boundary. The
most severe manifestations of these shortcomings is the occurrence of non-divergence free velocities or unphysical oscilla-
tions of the pressure in the vicinity of the immersed boundary [43,30]. Numerous revisions of these interpolations are still
proposed for improving the accuracy and consistency of this class of IB methods [30,3,49,43].

A second class of IB methods (also called cut-cell methods or simply Cartesian grid methods, see [66,59,61,32,12,9,40]) aims
for actually discretizing the flow equations in cut-cells. The discretization in the cut-cells is usually performed by ad hoc
treatments which have more in common with the techniques used on curvilinear or unstructured body-conformal grids than
Cartesian techniques. Most notable is the cell merging technique used by Ye et al. [66] and Chung [9] that merges a cut-cell
with a neighboring Cartesian cell to form a new polygonal cell with more than four neighbors. The discretization stencil in
this newly formed cell loses thus the five-point structure (in 2D) of Cartesian methods. Such treatments of the cut-cells gen-
erate a non-negligible bookkeeping to discretize the flow equations and actually solve them, and it is difficult to evaluate the
impact of these treatments on the computational cost of the flow simulations.

The purpose of this article is to present a new IB method for incompressible viscous flows which takes the best aspects of
both classes of IB methods. This method, called the LS-STAG method, is based on the symmetry preserving finite-volume
method by Verstappen and Veldman [63], which has the ability to preserve on non-uniform staggered Cartesian grids the
conservation properties (for total mass, momentum and kinetic energy) of the original MAC method [24]. The LS-STAG meth-
od has the following distinctive features:

– A sharp representation of the immersed boundary is obtained by using a signed distance function (i.e. the level-set func-
tion [46,47]) for its implicit representation. Level-set methods were devised by Osher and Sethian [48] for the solution of
computational physics problems involving dynamic interfaces. So far for incompressible flows, the main application areas
of level-set methods have been the computation of two-phase flows [56]. In the present paper, the level-set function
enables us to easily compute all relevant geometry parameters of the computational cells, reducing thus the bookkeeping
associated to the handling of complex geometries.

– In contrast to classical IB methods, flow variables are actually computed in the cut-cells, and not interpolated. Further-
more, the LS-STAG method has the ability to discretize the fluxes in Cartesian and cut-cells in a consistent and unified fash-
ion: there is no need for deriving an ad hoc treatment for the cut-cells, which would be totally disconnected from the basic
MAC discretization used in the Cartesian cells.

– For building our discretization, we have required the strict conservation of global quantities such as total mass,
momentum and kinetic energy in the whole fluid domain, which are crucial properties for obtaining physically realistic
numerical solutions [1,42,63]. To achieve these preservation properties up to the cut-cells, we had to precisely take into
account the terms acting on the immersed boundary in the global conservation equations, at both continuous and discrete
levels. As a result, the convective, pressure and viscous fluxes have been unambiguously determined by these require-
ments, and the boundary conditions at the immersed boundary have been incorporated into these fluxes with a consistent
manner.

– From the algorithmic point of view, one of the main consequences is that the LS-STAG discretization preserves the five-
point structure of the original Cartesian method. This property allowed the use of an efficient black box multigrid solver
for structured grids [62], where no ad hoc modifications had to be undertaken for taking account of the immersed
boundary.

We also mention that a first attempt at constructing an energy-conserving IB method from the ideas of Verstappen
and Veldman can be found in [12]. In this paper however most of the computational aspects of the method has been skipped:
it appears that computation of the geometry parameters of the cut-cells, shape of the velocity control volumes, imposition
of the boundary conditions at the IB surface and computation of the diffusive terms are different than in the LS-STAG
method.

The paper is organized as follows. In Section 2, we recall the notations and salient properties of the staggered Cartesian
mesh, and then we present the LS-STAG mesh, its extension for the handling of immersed boundaries. Section 3 presents the
LS-STAG discretization in the case the immersed boundary is steady. First, we will recall the global conservation laws for
total mass, momentum and kinetic energy that will be used for deriving the LS-STAG method. Then, we will present the dis-
cretization of the continuity equation, which is valid in both cut-cells and Cartesian cells. As a matter of fact, we shall observe
that the consistency of the discrete continuity equation is a crucial point for building an energy and momentum preserving
method for incompressible flows. In the next subsections, we will impose kinetic energy conservation upon our numerical
scheme for completely characterizing the discrete pressure and convective fluxes in the cut-cells, and total momentum con-
servation for the determination of the viscous fluxes. We mention that the discretization of the viscous fluxes has been by far
the most intricate part of the LS-STAG discretization in the cut-cells. Section 4 is devoted to numerical tests on canonical
flows at low to moderate Reynolds number for assessing the accuracy and robustness of the LS-STAG method. Comparisons
with an unstructured solver in terms of CPU time and accuracy will be given. Finally, we will present some results for one of
the most appealing features of IB methods: the ability to compute flows with immersed moving boundaries on fixed carte-
sian grids, without the need for domain remeshing at each time step.
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2. Preliminaries and description of the LS-STAG mesh

Let X be a rectangular computational domain and C its surface. The governing equations are the incompressible Navier–
Stokes equations in integral form. In the following, we will consider the finite-volume discretization of the continuity
equation:
Fig. 1.
Xu

i;j 2 X
Z
C

v � ndS ¼ 0; ð1Þ
where v ¼ ðu;vÞ is the velocity, and the momentum equations in the x and y directions, respectively:
d
dt

Z
X

udV þ
Z

C
ðv � nÞudSþ

Z
C

pex � ndS�
Z

C
mru � ndS ¼ 0; ð2aÞ

d
dt

Z
X

v dV þ
Z

C
ðv � nÞv dSþ

Z
C

pey � ndS�
Z

C
mrv � ndS ¼ 0; ð2bÞ
where p is the pressure and m is the kinematic viscosity.

2.1. The staggered MAC mesh for Cartesian geometries

The Cartesian method on which our IB method is based is the second-order finite-volume discretization of Verstappen
and Veldman [63], which has the ability to preserve on non-uniform Cartesian cells the conservation properties (for total
mass, momentum and kinetic energy) of the original MAC method on a uniform staggered grid [24]. The staggered arrange-
ment of the unknowns in a Cartesian cell is represented in Fig. 1. The rectangular computational X is partitioned into Carte-
sian cells Xi;j ¼�xi�1; xi½��yj�1; yj½, whose volume is Vi;j ¼ DxiDyj and center is xc

ij ¼ ðxc
i ; y

c
j Þ. The surface Ci;j of cell Xi;j is

subdivided into four elementary plane faces as:
Ci;j ¼ Ce
i;j [ Cw

i;j [ Cn
i;j [ Cs

i;j; ð3Þ
by using the usual compass notations (e.g. [17]). Cell Xi;j is used as a control volume for discretizing the continuity equation
(1), whereas the staggered cell Xu

i;j ¼�xc
i ; x

c
iþ1½��yj�1; yj½ is the control volume for the x-momentum equation (2a). For subdi-

viding the surface Cu
i;j of this control volume, we first decompose the north and south faces of Xi;j as Cn

i;j ¼ Cn;w
i;j [ Cn;e

i;j and
Cs

i;j ¼ Cs;w
i;j [ Cs;e

i;j , respectively, and then write:
Staggered arrangement of the variables for (a) a Cartesian cell Xi;j , and representation of control volumes for (b) ui;j and (c) v i;j . The control volumes
i;j [Xiþ1;j and Xv

i;j 2 Xi;j [Xi;jþ1 are to be completed with their complementary part in Xiþ1;j and Xi;jþ1, respectively.
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Cu
i;j ¼ Cu;w

i;j [ Cu;e
i;j [ Cs;e

i;j [ Cs;w
iþ1;j

� �
[ Cn;e

i;j [ Cn;w
iþ1;j

� �
: ð4Þ
An analogous decomposition holds for the faces of the control volume Xv
i;j, which is used for discretizing the y-momentum

equation (2b). These notations will be useful for describing the LS-STAG mesh.

2.2. The LS-STAG mesh for immersed geometries

We consider now an irregular solid domain Xib which is embedded in the computational domain X, such that Xf ¼ X nXib

represents the fluid domain where the Navier–Stokes equations are to be discretized. To keep track of the irregular boundary
Cib, we employ a signed distance function /ðxÞ (i.e. the level-set function [46,47]) such that /ðxÞ is negative in the fluid region
Xf ; /ðxÞ is positive in the solid region Xib, and such that the boundary Cib corresponds to the zero level-set of this function,
i.e.:
/ðxÞ �
�D; x 2 Xf ;

0; x 2 Cib;

þD; x 2 Xib;

8><>: ð5Þ
where D represents the distance between x and the nearest point on the immersed boundary.
This leads to the modification of the MAC mesh that is described in Fig. 2, and that will be subsequently referred to as the

LS-STAG mesh. In each cut-cell Xi;j, the immersed boundary is represented by a line segment whose extremities are defined by
linear interpolation of the variable /i;j, which takes the value of the level-set function /ðxi; yjÞ at the upper right corner of the
cell. We use notations similar to the Cartesian method for the faces of the cut-cells. For example in Fig. 2, the faces of the
trapezoidal cut-cell Xi;j are denoted:
Ci;j ¼ Cw
i;j [ Ce

i;j [ Cs
i;j [ Cib

i;j ; ð6Þ
where Cib
i;j represents the solid north face of the cut-cell. As it will be justified later, the velocity unknowns are exactly located

in the middle of the fluid part of the faces. In Fig. 2, the discrete pressure pi;j is located at the intersection of the velocity loca-
tions. This location is used for visualization purpose only, and will never be used in the discretization. In effect, we will find
out in Section 3.3 that the discrete pressure is piecewise constant in each cut-cell, as in some mixed finite element methods
(e.g. [50]), and thus does not need to be precisely located in the cut-cells.

As observed in Fig. 2, there are three basic types of cut-cells: trapezoidal cells such as Xi;j or Xiþ1;j, triangular cells (i.e.
Xi�1;jþ1) and pentagonal cells (i.e. Xi�1;j). The discretization of the momentum equations will be performed in the staggered
control volumes Xu

i;j and Xv
i;j, whose shape has to be adapted to each type of cut-cells. For example in Fig. 2, the faces of

the control volume Xu
i;j read:
Cu
i;j ¼ Cu;w

i;j [ Cu;e
i;j [ Cs;e

i;j [ Cs;w
iþ1;j

� �
[ Cib;e

i;j [ Cib;w
iþ1;j

� �
; ð7Þ
where the solid faces Cib;e
i;j [ Cib;w

iþ1;j are formed with two halves of the solid face of the neighboring trapezoidal cut-cells
Cib;e

i;j � Cib
i;j and Cib;w

iþ1;j � Cib
iþ1;j. For the other type of cut-cells, these control volumes will be constructed from the six halves

of generic control volumes that we represent in Fig. 3. In this figure, the irregular shape of the staggered control volumes
is given for representation purpose only, and their geometric parameters, such as their actual volume or shape of the vertical
Fig. 2. Staggered arrangement of the variables near the trapezoidal cut-cell Xi;j on the LS-STAG mesh.



Fig. 3. Basic types of half control volume for the velocity unknown ui;j inside the cut-cell Xi;j . The diamonds ( ) denote the locations of the discretization of
the velocity boundary conditions. Note that the re-entrant corner of a Cartesian mesh is a particular case of pentagonal cell (c) when /i;j ¼ 0, and that Case
(f) (which corresponds to /i�1;j�1 ¼ /i�1;j ¼ /i;j ¼ 0 and /i;j�1 < 0) corresponds to the particular case of a salient corner. Only the definition of the cell volume
distinguishes the latter cell from the liming case of triangle (e) defined by /i�1;j�1 ¼ /i;j ¼ 0; /i�1;j > 0 and /i;j�1 < 0.
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faces Cu;w
i;j and Cu;e

i;j are never used by the LS-STAG discretization: instead, we will employ arguments based on the strict con-
servation of global quantities of the flow, such as conservation of total mass and kinetic energy for discretizing the momen-
tum equations in the cut-cells. For complexness, we present in Fig. 4 all the possible combinations of the half control
volumes of Fig. 3 for forming the control volume Xu

i;j. It is important to mention that the LS-STAG discretization does not need
to be individually adapted to each of the cases depicted in this figure. Instead, the discretization will be built for the half
control volumes of Fig. 3, such that any combination yields a consistent discretization of the momentum equations with
the aforementioned global conservation properties.

However, the LS-STAG method relies on a sharp representation of the geometry of the cut-cells Xi;j. In this respect, the
level-set function will prove to be a very efficient tool for calculating the geometric parameters of a cut-cell, such as its vol-
ume or the projected areas of its faces. A quantity that will be extensively used for calculating these parameters is the fluid
portion of the faces of cell Xi;j. For example in Fig. 2, by using one-dimensional linear interpolation of /ðxi; yÞ in ½yj�1; yj�, we
calculate the length yib

i;j � yj�1 of the portion of face Ce
i;j that belongs to the fluid domain as:



Fig. 4. All possible combinations of the half control volumes of Fig. 3 for forming the control volume Xu
i;j . Case (h) has to be excluded from the actual flow

computations since it would give rise to a non-unique definition of the differential quotient @v=@xji;j , which is stored at the upper right corner of cut-cell Xi;j.
This case corresponds to an oscillation of the level-set (/i�1;j < 0; /i;j > 0 and /iþ1;j < 0). It can be easily filtered prior to the flow computation by setting
/i;j ¼ 1

2 ð/i�1;j þ /iþ1;jÞ. This particular case happens very scarcely in the meshes we actually use, since it would correspond to a mesh that is too coarse when
compared to the local curvature of the immersed boundary (see [47, Section 1.4]).
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yib
i;j � yj�1 ¼ hu

i;jDyj; with hu
i;j ¼

/i;j�1

/i;j�1 � /i;j
since / xi; yib

i;j

� �
¼ 0:
The scalar quantities hu
i;j and hv

i;j, which take values in ½0;1�, will subsequently be called the cell-face fraction ratios. They rep-
resent the fluid portion of the east and north faces Ce

i;j and Cn
i;j, respectively. They will be extensively used for detecting if the

discrete velocities ui;j and v i;j belong to the fluid domain, and for discretizing the surface and volume integrals in the Navier–
Stokes equations (1) and (2). The cell-face fraction ratios also appear in the analytic expression of the volume Vi;j of cut-cell
Xi;j, which is given in Table 1 for the three basic types of cut-cells. We note that Vi;j correspond to the VOF function which is
used for the simulation of multiphasic flows, e.g. [53].



Table 1
Analytical formula of the volume for the basic cut-cells of Fig. 3. The volumes of the other cut-cells can be easily deduced from the ones displayed.

Type of cut-cell Volume

(c) Northeast pentagonal cell Vi;j ¼ hv
i;j þ 1

2 1þ hu
i;j

� �
1� hv

i;j

� �h i
DxiDyj

(d) North trapezoidal cell Vi;j ¼ 1
2 hu

i;j þ hu
i�1;j

� �
DxiDyj

(e) Northwest triangle Vi;j ¼ 1
2 hu

i;jh
v
i;j�1DxiDyj

(f) Northwest salient corner Vi;j ¼ DxiDyj
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3. The LS-STAG discretization for stationary immersed geometries

3.1. Global conservation laws for viscous incompressible flows

As early as the 1950s, it was recognized that for physically realistic integration of dynamical systems such as the fluid
dynamics equations, linear and quadratic invariants of the continuous equations should be conserved by the numerical
scheme [1,34]. For the incompressible Navier–Stokes equations (1) and (2), these flow invariants are the total mass in the
whole fluid domain

R
Xf r � v dV , total momentum PðtÞ ¼

R
Xf v dV and, in the case of vanishing viscosity, total kinetic energy

EcðtÞ ¼ 1
2

R
Xf jvj2 dV .

Conservation equation for total mass and momentum are obtained by a straightforward integration of the Navier–Stokes
equations in the whole fluid domain Xf . After integrating by parts of the volume integrals, one gets:
Z

Cib
v � ndS ¼ 0; ð8aÞ

dP
dt
¼ �

Z
Cib

vv � ndS� F; ð8bÞ
where F ¼ ðFx; FyÞ represents the hydrodynamic force acting on the immersed boundary, such that:
Fx ¼
Z

Cib
p� m

@u
@x

� �
ex � ndS�

Z
Cib

m
@u
@y

ey � ndS; ð9aÞ

Fy ¼ �
Z

Cib
m
@v
@x

ex � ndSþ
Z

Cib
p� m

@v
@y

� �
ey � ndS: ð9bÞ
At the discrete level, total mass is trivially conserved on the MAC mesh because of the staggering of the velocities, and so it
will be on the LS-STAG mesh. On non-staggered grids however, we mention that the discrete equivalent of (8a) is not ver-
ified, and the mass dissipation of non-staggered methods remains an issue [55,64]. At the discrete level, total momentum is
conserved by any numerical method if the momentum equation is written in its conservative form and if the property of
local conservation of the numerical fluxes at cell faces holds. If the issue of the implementation of boundary conditions is
to be included in the analysis, we may consider that total momentum is conserved if the RHS of the discrete counterpart
of (8b) is consistent with the computation of the hydrodynamic force that acts on the solid boundary. This issue is mostly
pertinent for non-body conforming methods such as IB methods.

For incompressible flows, the conservation of kinetic energy is a consequence of the Navier–Stokes equations, and the
equation for EcðtÞ is obtained by multiplying the momentum equation with v and integrating in the whole fluid domain.
After integration by parts of the volume integrals, this conservation equation reads:
dEc

dt
¼
Z

Xf

jvj
2

2

þ p

 !
r � v � mjrvj2

" #
dV �

Z
Cib

jvj
2

2

þ p� mrv
 !

v � ndS: ð10Þ
Thanks to the continuity equation, the only term remaining in the volume integral involves the viscous stresses, and ex-
presses the loss of energy by viscous dissipation. The non-vanishing terms in the surface integrals show that the pressure
and convective terms only influence the kinetic energy budget by their action at the immersed boundary. On uniform Carte-
sian grids, it is well known the original MAC method with central differencing of the convective term is energy preserving, i.e.
the discrete kinetic energy budget of the scheme mimics (10). However, for more general type of meshes the construction of
energy preserving methods is not a trivial task. In [42], Morinishi et al. have extended this property to higher-order finite-
difference discretizations on uniform Cartesian grids. More recently, Verstappen and Veldman [63] constructed an energy
preserving finite-volume method on non-uniform grids by observing that the discrete kinetic budget mimics (10) if the con-
vective and viscous terms are discretized with skew-symmetric and symmetric positive-definite operators, respectively. In
the next sections, we will use similar arguments for building an energy (and momentum) preserving discretization on the LS-
STAG mesh. We mention that for constructing this discretization up to the cut-cells, we had to precisely take into account the
boundary integrals in (8b), (9) and (10). To our knowledge, these boundary terms have always been neglected in previous
studies, with the exception of the recent work by Jameson [29].
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In the following, we will focus on semi-discrete conservation properties only, i.e. we will ignore issues related to the vio-
lation of these properties by the time-stepping scheme, as the other studies cited in this paragraph do. However, we mention
that quadratic invariants such as the total kinetic energy can be totally conserved in an unsteady computation if implicit
Runge–Kutta (IRK) schemes at Gaussian points are used, of which the well known midpoint rule is a particular case [2]. Nev-
ertheless, several issues arise when IRK schemes are applied to the incompressible Navier–Stokes equations: the implicit
nature of the convective discretization, the loss of accuracy which is observed on the computed pressure, and the fact that
they are not stiffly accurate which hampers their stability properties. Thus, the design of a practical and energy conservative
time-stepping method for incompressible viscous flows is left for future work.

3.2. Discretization of the continuity equation

As in the Cartesian method of Ref. [63], the starting point of the LS-STAG discretization concerns the mass conservation
law (1) in cell Xi;j. For any fluid cell (cut-cell or Cartesian), we denote its faces as Ci;j ¼ Cw

i;j [ Ce
i;j [ Cs

i;j [ Cn
i;j [ Cib

i;j , and decom-
pose the continuity equation as the net mass flux through each of these faces:
_mi;j � ��ui�1;j þ �ui;j � �v i;j�1 þ �v i;j þ Uib
i;j ¼ 0: ð11Þ
In this equation, Uib
i;j �

R
Cib

i;j
v ib � nib

i;j dS denotes the mass flux through the solid part of the cell boundary, where v ib is the veloc-

ity datum prescribed at the IB boundary. This boundary mass flux may be non-zero for non-homogeneous boundary condi-
tions only. The mass flow through the fluid part of the faces is denoted with a bar: for example, the flow through face Ce

i;j of
Fig. 2 is:
�ui;j �
Z

Ce
i;j

v � ex dS ¼
Z yib

i;j

yj�1

uðxi; yÞdy: ð12Þ
In order to easily discretize this integral, we first locate the discrete unknown ui;j in the middle of the fluid part of the face as:
ui;j � u xi; yj�1 þ
1
2

hu
i;jDyj

� �
: ð13Þ
Then, by using midpoint quadrature, we obtain:
�ui;j ffi hu
i;jDyjui;j; ð14Þ
and following analogous discretizations for the other faces, the discrete continuity equation reads:
_mi;j � Dyj hu
i;jui;j � hu

i�1;jui�1;j

� �
þ Dxi hv

i;jv i;j � hv
i;j�1v i;j�1

� �
þ Uib

i;j ¼ 0: ð15Þ
We now turn to the discretization of the boundary term as:
Uib
i;j ffi uib

i;j ½nxDS�ibi;j þ v ib
i;j ½nyDS�ibi;j ; ð16Þ
where ½nxDS�ibi;j and ½nyDS�ibi;j are the projected areas of the solid face of the cut-cell in the horizontal and vertical directions,

respectively, and velocity v ib
i;j ¼ uib

i;j ;v ib
i;j

� �
represents an approximation of the velocity on the solid boundary Cib

i;j of the

cut-cell. This last term is calculated with the trapezoidal rule, for example in Fig. 2:
v ib
i;j ¼

1
2

v ib xi; yib
i;j

� �
þ 1

2
v ib xi�1; yib

i�1;j

� �
;

where the velocity boundary condition v ibðx; yÞ is discretized at the extremities of line segment Cib
i;j in the cut-cell. The pro-

jected areas are readily calculated from the cell-face fraction ratios as:
½nxDS�ibi;j ¼ hu
i�1;j � hu

i;j

� �
Dyj; ½nyDS�ibi;j ¼ hv

i;j�1 � hv
i;j

� �
Dxi: ð17Þ
We mention that this discretization of the continuity equation is valid for any type of cut-cells, and in the particular case of a
Cartesian fluid cell (such as the cell-face fraction ratios are equal to 0 or 1 only), Eq. (15) reduces to the discrete continuity
equation of the original MAC method.

In the following, it will be useful to write the discrete continuity equation in its matrix form:
DU þ Uib ¼ 0; ð18Þ
where each line ði; jÞ of this system corresponds to Eq. (15) written in cell Xi;j, and the vectors U and Uib contains the velocity
unknowns ðui;j;v i;jÞ and the discretization of the boundary terms, respectively.

3.2.1. Discrete conservation of total mass
Now we are able to show that this discretization of the continuity equation conserves total mass in the most general case

of the LS-STAG method: i.e. when the IB boundary has the time-dependent motion of a rigid body:
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v ibðx; tÞ ¼ V ibðtÞ þXibðtÞ � Ox; ð19Þ
where O is a reference point of the immersed solid Xs, vectors V ibðtÞ and XibðtÞ are given translation and angular velocities.
We also have to make two assumptions on the computational domain. The first one expresses that the immersed boundary
Cib is a closed surface, i.e.:
Z

Cib
nib dS ¼

X
Cut-cellsXi;j

Z
Cib

i;j

nib
i;j dS ¼ 0; ð20aÞ
and the second one states that the fluid domain is not dilatable:
d
dt

Z
Xf

dV ¼
X

Cut-cellsXi;j

Z
Cib

i;j

v ibðx; tÞ � nib
i;j dS ¼ 0: ð20bÞ
In these equations the integrand is linear in space since v ibðx; tÞ is given by (19), so midpoint and trapezoidal rules give exact
quadrature:
X

Cut-cellsXi;j

½nDS�ibi;j ¼ 0; ð21aÞ

X
Cut-cellsXi;j

XibðtÞ �
Oaib

i;j þ Obib
i;j

2
� ½nDS�ibi;j ¼ 0; ð21bÞ
where aib
i;j and bib

i;j denote the extremities of line segment Cib
i;j in a cut-cell.

The discrete counterpart of the conservation of total mass (8a) amounts to summing the discrete continuity equation (11)
in all fluid cells. In matrix form it reads:
1TDU þ 1TUib ¼ 0; ð22Þ
where 1 is the constant vector. For proving this identity, we first simplify its left-hand-side by using the local conservativity
of the mass fluxes at fluid faces, such that only the fluxes Uib

i;j at the IB boundary remains:
1TDU þ 1TUib ¼ 1TUib:
Then, after integrating the velocity datum (19) with the trapezoidal rule one finally obtains:
1TDU þ 1TUib ¼
X

Cut-cellsXi;j

V ibðtÞ � ½nDS�ibi;j þXibðtÞ �
Oaib

i;j þ Obib
i;j

2
� ½nDS�ibi;j ¼ 0;
thanks to identities (21a) and (21b). Thus, total mass is trivially conserved by the LS-STAG method. In the following, we will
see that the other global conservation properties of Section 3.1 will not be as easily satisfied. Instead, we will have to impose
some constraints on the discretization of the momentum equation such that total momentum and kinetic energy be dis-
cretely conserved.

3.3. Momentum equation I: energy preserving discretization

Now, we turn to the discretization of the momentum equation (2), whose semi-discrete matrix representation reads:
d
dt
ðMUÞ þ C½U�U þ GP � mKU þ Sib;c � mSib;v ¼ 0; ð23Þ
where the diagonal mass matrixM is built from the volume of the fluid cells, matrix C½U� represents the discretization of the
convective fluxes, G is the discrete pressure gradient, K represents the diffusive term, Sib;c and Sib;v are source terms arising
from the boundary conditions of the convective and viscous terms, respectively. These different terms will now be con-
structed such that total momentum and kinetic energy are discretely conserved.

We consider first the conservation of the kinetic energy EcðtÞ ¼ 1
2

R
Xf jvj2 dV , that we discretize with the trapezoidal rule in

each fluid cell Xi;j:
EcðtÞ ffi Eh
c ðtÞ ¼

1
2

UTMU þ 1
2

Uib;TMibUib; ð24Þ
whereM is the diagonal mass matrix that appears in the discrete momentum equation (23), and Uib;TMibUib is the contri-
bution of the boundary conditions, which are assumed to be steady. For each line ði; jÞ of the discrete system (23), the trap-
ezoidal rule gives the value of the diagonal coefficient of the mass matrix in the horizontal and vertical directions:
½Mx�Pði; jÞ ¼
1
2

Vi;j þ
1
2

Viþ1;j; ½My�Pði; jÞ ¼
1
2

Vi;j þ
1
2

Vi;jþ1; ð25Þ
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where the subscript P refers to the main diagonal elements in the usual compass notation (e.g. [17]). These expressions show
that, in the cut-cells at least, the mass matrix for ui;j and v i;j is not constructed from the actual areas of Xu

i;j and Xv
i;j.

The conservation equation for Eh
c ðtÞ is obtained after time-differentiation of (24), then by using the discrete momentum

equation (23), we finally obtain:
dEh
c

dt
¼ �UT C½U�T þ C½U�

2
U � PTGTU � UT mðKT þKÞ

2
U � UTðSib;c � mSib;vÞ: ð26Þ
In order to obtain an expression similar to (10), the viscous term �UTðKT þKÞU should mimic the viscous dissipation of the
kinetic energy budget, and thus should always be strictly negative. This feature is obtained as soon as the matrix KT þK is
positive definite. For a finite-volume method, this is obtained as soon as the discrete diffusive flux is stable and consistent
[13]. Note that the symmetry of K is not required. If, in addition, we impose that the discretization of the convective terms
leads to a skew-symmetric matrix:
C½U� ¼ �C½U�T; ð27Þ
and that, as in the finite element method, the pressure gradient be dual to the divergence operator (see Eq. (18)):
G ¼ �DT; ð28Þ
we finally observe that the boundary terms only affects the kinetic energy budget when the viscosity vanishes:
dEh
c

dt
¼ �PTUib � UTSib;c: ð29Þ
3.3.1. Discretization of the pressure gradient
In the above equation, the term PTUib represents the discretization of the pressure term

R
Cib pv � ndS in Eq. (10), and con-

dition (28) allows us to completely determine the discrete pressure gradient in control volumes Xu
i;j and Xv

i;j from the discrete
divergence operator (15):
Z

Cu
i;j

pex � ndS ffi ½GxP�i;j ¼ hu
i;jDyjðpiþ1;j � pi;jÞ; ð30aÞZ

Cv
i;j

pey � ndS ffi ½GyP�i;j ¼ hv
i;jDxiðpi;jþ1 � pi;jÞ: ð30bÞ
These formulae are valid for any type of fluid cells, and in the particular case of Cartesian fluid cells (such that the cell-face
fraction ratios are equal to 1), one recovers the finite-difference gradient of the MAC method:
½GxP�i;j ¼
piþ1;j � pi;j

1
2 Dxiþ1 þ 1

2 Dxi
½Mx�Pði; jÞ;
where ½Mx�Pði; jÞ ¼ 1
2 Dxiþ1 þ 1

2 Dxi
� 	

Dyj for the Cartesian control volume Xu
i;j.

In the cut-cells however, it is not possible to interpret formulas (30) as finite-difference quotients for pi;j located at the
centroids of the cut-cells. Instead, the LS-STAG discretization has much in common with the P1 nonconforming/P0 finite ele-
ment method, where the pressure is approximated with a piecewise constant polynomial with degrees of freedom at the
elements centroid [50]. As a consequence, pi;j is a valid approximation of the pressure anywhere inside cut-cell Xi;j, even
on its solid face. Note that an equivalence of this assumption in a Cartesian mesh is that the pressure gradient is zero at solid
boundaries. In the next Section, we shall observe that the normal viscous stresses are discretized similarly.

3.3.2. Skew-symmetric discretization of the convective fluxes
For the x-momentum equation (2a), the skew-symmetry property (27) of C½U� imposes upon the discretization of the con-

vective term, that we write in a Cartesian control volume away from the immersed boundary as the following five-point
scheme:
Z

Cu
i;j

ðv � nÞudS ffi C½U�Wði; jÞui�1;j þ C½U�Eði; jÞuiþ1;j þ C½U�Pði; jÞui;j þ C½U�Sði; jÞui;j�1 þ C½U�Nði; jÞui;jþ1; ð31Þ
must verify the following conditions:
C½U�Pði; jÞ ¼ 0; ð32aÞ
C½U�Eði; jÞ ¼ �C½U�Wðiþ 1; jÞ; ð32bÞ
C½U�Nði; jÞ ¼ �C½U�Sði; jþ 1Þ: ð32cÞ
The central discretization of the MAC method trivially verifies these conditions on uniform meshes. Other popular dis-
cretization, such as discretizations of upwind type, are known to violate this condition, resulting in adding artificial vis-
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cosity to the scheme. Recently, Verstappen and Veldman [63] have proposed a skew-symmetric discretization, also
coined symmetry preserving, which enforces conditions (32c) on non-uniform Cartesian meshes. This discretization will
be the building block of the LS-STAG discretization of the convective term in the cut-cells. For the Cartesian control vol-
ume Xu

i;j of Fig. 1, the skew-symmetric discretization consists in writing the convective term as the net flux through its
four elementary faces:
Z

Cu
i;j

ðv � nÞudS ¼ �
Z

Cu;w
i;j

ðv � exÞudyþ
Z

Cu;e
i;j

ðv � exÞudy�
Z

Cs;e
i;j
[Cs;w

iþ1;j

ðv � eyÞudxþ
Z

Cn;e
i;j
[Cn;w

iþ1;j

ðv � eyÞudx; ð33Þ
Each of these terms are discretized with the help of the discrete mass fluxes (14), for example for the east face:
Z
Cu;e

i;j

ðv � exÞudy ffi
�ui;j þ �uiþ1;j

2
ue; ð34Þ
where ue is a characteristic value of u on Cu;e
i;j , which has to be obtained by interpolation of the discrete velocity unknowns. As

observed by Verstappen and Veldman, the only possible way to verify the skew-symmetric conditions (32c) is to use central
interpolation with equal weighting:
ue ¼
ui;j þ uiþ1;j

2
: ð35Þ
Analogous interpolations are obtained on the other faces, for example on the south face:
Z
Cs;e

i;j
[Cs;w

iþ1;j

ðv � eyÞudx ffi
�v i;j�1

2
us þ

�v iþ1;j�1

2
us; ð36Þ
with us ¼ ðui;j�1 þ ui;jÞ=2. Now, by using the property of local conservativity of the fluxes through fluid faces:
Z
Cu;w

i;j

ðv � exÞudy ¼
Z

Cu;e
i�1;j

ðv � exÞudy;
Z

Cn;e
i;j

ðv � eyÞudx ¼
Z

Cs;e
i;jþ1

ðv � eyÞudx; ð37Þ
one gets, after identification with (31), the following coefficients of the discretization:
C½U�Pði; jÞ ¼
1
4

_mi;j þ 1
4

_miþ1;j; ð38aÞ

C½U�Wði; jÞ ¼ �
1
4

�ui�1;j �
1
4

�ui;j; C½U�Eði; jÞ ¼
1
4

�ui;j þ
1
4

�uiþ1;j; ð38bÞ

C½U�Sði; jÞ ¼ �
1
4

�v i;j�1 �
1
4

�v iþ1;j�1; C½U�Nði; jÞ ¼
1
4

�v i;j þ
1
4

�v iþ1;j; ð38cÞ
which verifies the antisymmetry conditions (32c) when the discrete continuity equation is verified in Xi;j and Xiþ1;j. Any type
of interpolation other than (35), for example an upwind discretization, would violate theses conditions.

In the cut-cells, the skew-symmetric discretization given by (31) and (38c) must be modified in order to take
into account the boundary conditions on the immersed boundary. This discretization would prove to be more com-
plicated to build than for the pressure gradient, because we could not obtain a unique formula which would be
valid for any type of cut-cells: instead, the discretization should be constructed in each of the half generic control
volumes of Fig. 3 such as the skew-symmetry condition (27) be verified for any combinations of these half control
volumes.

Let us consider the case of the control volume Xu
i;j of Fig. 2, whose north solid boundary Cib;e

i;j [ Cib;w
iþ1;j is built from two

halves of trapezoidal cut-cells. For this control volume, the discretization of the convective term must take the form:
Z
Cu

i;j

ðv � nÞudS ffi C½U�Wði; jÞui�1;j þ C½U�Eði; jÞuiþ1;j þ C½U�Pði; jÞui;j þ C½U�Sði; jÞui;j�1 þ Sib;c
i;j ; ð39Þ
where C½U�Nði; jÞ is discarded since the velocity unknown ui;jþ1 does not exist in the fluid domain. The skew-symmetry con-
dition (27) reads for this control volume:
C½U�Pði; jÞ ¼ 0; C½U�Eði; jÞ ¼ �C½U�Wðiþ 1; jÞ: ð40Þ
The discretization that verifies these conditions is obtained by decomposing the boundary of the control volume as in Eq. (7),
and writing the convective term as the net flux through each of these faces:
Z

Cu
i;j

ðv � nÞudS ¼ �
Z

Cu;w
i;j

ðv � exÞudyþ
Z

Cu;e
i;j

ðv � exÞudy�
Z

Cs;e
i;j
[Cs;w

iþ1;j

ðv � eyÞudxþ
Z

Cib;e
i;j
[Cib;w

iþ1;j

ðv � nibÞudS: ð41Þ
The fluxes through each of the fluid faces are given by Eqs. (34), (36) and (37), whereas the fluxes through each half of solid
face Cib;e

i;j and Cib;w
iþ1;j are discretized separately as:
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Z
Cib;e

i;j

v � nib
i;j

� �
udS ffi

Uib
i;j

2
1
2

ui;j þ
1
2

u xi; yib
i;j

� �� �
; ð42aÞ

Z
Cib;w

iþ1;j

v � nib
iþ1;j

� �
udS ffi

Uib
iþ1;j

2
1
2

ui;j þ
1
2

u xi; yib
i;j

� �� �
: ð42bÞ
In these expressions, the terms underlined once contribute to the diagonal coefficient C½U�Pði; jÞui;j, in order to recover the
expression of the discrete continuity in Xi;j and Xiþ1;j, whereas the terms which are twice underlined contribute to the source
term Sib;c

i;j . As a result, the discretization of the convective term in this control volume is also given by (38c), with the excep-
tion that:
C½U�Nði; jÞ ¼ 0; Sib;c
i;j ¼

1
2

Uib
i;j

2
þ

Uib
iþ1;j

2

 !
u xi; yib

i;j

� �
: ð43Þ
The antisymmetry conditions (40) is thus verified, and we may consider that the source term Sib;c
i;j ui;j that arises in the kinetic

energy budget (29) corresponds to a discrete approximation of the term
R
Cib jv j2v � n=2dS written on the solid boundary

Cib;e
i;j [ Cib;w

iþ1;j of the control volume.
For the other types of half control volumes depicted in Fig. 3, the skew-symmetric discretization is given in Appendix A.

This discretization is built such that the skew-symmetry condition (27) is verified for any combinations of these half control
volumes.

3.4. Momentum equation II: Discretization of the viscous fluxes based on the conservation of total momentum

For the x-momentum equation (2a), the viscous terms written in control volume Xu
i;j reads:
Z

Cu
i;j

ru � ndS ¼
Z

Cu
i;j

@u
@x

ex � ndSþ
Z

Cu
i;j

@u
@y

ey � ndS: ð44Þ
We aim to discretizing these terms in the cut-cells such that the simplicity of the five-point structure of the MAC
method be preserved. We have found that the discretization of the viscous fluxes is much more intricate than for the
convective fluxes. As a matter of fact, we will need to impose the conservation of total momentum (8b) at the discrete
level for completely characterizing theses terms: this is equivalent to stating that the discretization of the viscous
fluxes in the cut-cell be consistent with the discretization of the hydrodynamic forces (9) acting on the immersed
boundary.

First and foremost, we had to make a distinction between the discretization of the normal stress fluxes, e.g.R
Cu

i;j
@u=@xex � ndS and the shear stress fluxes, e.g.

R
Cu

i;j
@u=@yey � ndS. This distinction is also observed in Cartesian fluid cells

since, due to the staggering of the velocity unknowns on the MAC mesh, the normal stresses:
@u
@x






i;j

¼ ui;j � ui�1;j

Dxi
;

@v
@y






i;j

¼ v i;j � v i;j�1

Dyj
; ð45Þ
are naturally located at the center of cell Xi;j, while the shear stresses:
@u
@y






i;j

¼ ui;jþ1 � ui;j
1
2 Dyjþ1 þ 1

2 Dyj

;
@v
@x






i;j

¼ v iþ1;j � v i;j
1
2 Dxiþ1 þ 1

2 Dxi
; ð46Þ
are located at its upper right corner (see Fig. 5).
On the LS-STAG mesh, it is very natural to locate the shear stresses at the vertices of the cut-cells as shown on Fig. 6. Note

that for the case of pentagonal cells, @u=@yji;j and @v=@xji;j are computed at distinct vertices.
Fig. 5. Location of the pressure and viscous stresses in Cartesian cell Xi;j.



Fig. 6. Location of the shear stresses in the three generic cut-cells Xi;j. The location on the other cut-cells of Fig. 3 can be easily deduced from this figure.
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For the normal stresses in contrast, we consider that these terms have a physical origin (diagonal part of the Cauchy stress
tensor) and a mathematical regularity similar to the pressure. In consequence, their treatment should be consistent with the
pressure discretization discussed in the previous section: we assume that the normal stresses @u=@xji;j and @v=@yji;j take con-
stant values in cut-cell Xi;j, and do not need to be precisely located inside the cut-cell.

As a conclusion to this paragraph, we mention that the LS-STAG discretization of the viscous stresses has much in com-
mon with the finite element method for viscoelastic flows of Saramito [52], where the normal stresses are discretized with
piecewise constant polynomials with a degree of freedom at the elements centroid, while the shear stresses are discretized
with a linear continuous polynomial with degrees of freedom at the elements vertices.

3.4.1. Discretization of the normal stress fluxes
We now turn to the discretization of the normal stress flux

R
Cu

i;j
@u=@xex � ndS in the cut-cells. For this term, a geometric-

based formula would consist in writing this term as the net flux through the east Cu;e
i;j and west Cu;w

i;j faces, and then discretize
each of these terms with a differential quotient, for example in Fig. 6(a) and (b):
Z

Cu;w
i;j

@u
@x

ex � ndS ffi Dyu;w
i;j

ui;j � ui�1;j

Dxi
; ð47Þ
where the area Dyu;w
i;j is yet to be defined. All our efforts in this direction gave disappointing results in terms of numerical

accuracy. The reason is that the LS-STAG mesh is not admissible in the sense of Eymard et al. [13] for the normal stresses
in the cut-cells: the line joining the location of ui�1;j and ui;j is not orthogonal to the face Cu;w

i;j in the trapezoidal cell of
Fig. 6(b). This feature is also observed for pentagonal cut-cells (see Fig. 6(a)), and has the consequence to render approxima-
tion (47) non-consistent and thus to yield large numerical errors.

In order to improve the consistency of this term, we use the fact that the discrete normal stresses should be consistent
with the discrete pressure, as argued above, and thus the normal stress flux shall be discretized with an expression similar to
the pressure gradient (30a):
Z

Cu
i;j

@u
@x

ex � ndS ffi hu
i;jDyj

@u
@x






iþ1;j
� @u
@x






i;j

 !
: ð48Þ
The discretization has to be completed with a differential quotient for @u=@xji;j. This quotient is constructed by requiring that
Green’s theorem:
Z

Xi;j

@u
@x
þ @v
@y

� �
dV ¼

Z
Ci;j

v � ndS; ð49Þ
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be valid at the discrete level in a cut-cell, since it is trivially verified by the MAC method in a Cartesian cell. After a straight-
forward discretization of the integrals and comparison with the continuity equation (15), one gets:
@u
@x






i;j

ffi
hu

i;jui;j � hu
i�1;jui�1;j þ hu

i�1;j � hu
i;j

� �
uib

i;j

V i;j=Dyj
; ð50aÞ
and an analogous expression holds for @v=@yji;j:
@v
@y






i;j

ffi
hv

i;jv i;j � hv
i;j�1v i;j�1 þ hv

i;j�1 � hv
i;j

� �
v ib

i;j

V i;j=Dxi
: ð50bÞ
These expressions are valid for any type of cut-cells, with the boundary conditions naturally imbedded. These formulae re-
duce to the standard finite-difference quotients for a Cartesian fluid cell (see e.g. (45)).
3.4.2. A first discretization of the shear stress fluxes
In contrast, the discretization of the shear stress flux

R
Cu

i;j
@u=@yey � ndS may seem simpler because the LS-STAG mesh is

admissible for this term (see Fig. 2). The shear stress term can thus be written as the net flux through the north and south
faces, for example far from the immersed boundary:
Z

Cu
i;j

@u
@y

ey � ndS ¼
Z

Cn;e
i;j
[Cn;w

iþ1;j

@u
@y

dx�
Z

Cs;e
i;j
[Cs;w

iþ1;j

@u
@y

dx: ð51Þ
Application of the midpoint rule gives for the north face for example:
Z
Cn;e

i;j
[Cn;w

iþ1;j

@u
@y

dx ffi Dxn;e
i;j þ Dxn;w

iþ1;j

� �@u
@y






i;j

; ð52Þ
where for the purpose of local conservation of the fluxes, the areas Dxn;e
i;j and Dxn;w

iþ1;j represent only the fluid part of the faces,
i.e.:
Dxn;e
i;j ¼

1
2

hv
i;jDxi; Dxn;w

iþ1;j ¼
1
2

hv
iþ1;jDxiþ1: ð53Þ
The quotient @u=@yji;j, located at the upper right corner of cell Xi;j (see Fig. 5), is computed by differentiating the interpolation
polynomial of uðxi; �Þ in the vertical direction:
@u
@y






i;j

¼ ui;jþ1 � ui;j
1
2 hu

i;jþ1Dyjþ1 þ 1
2 hu

i;jDyj
: ð54Þ
This finite-difference quotient is much similar to the usual one (Eq. (46)). Formulae (52)–(54) are valid if ui;jþ1 is present in
the fluid domain, i.e. if hu

i;jþ1 > 0: this is the case of the Cartesian cell of Fig. 1(b), and the cut-cells in Fig. 3(a) and (b).
In the case where the north face is solid and thus ui;jþ1 does not exist (case where hu

i;jþ1 ¼ 0, for the cut-cells of Fig. 3(c)–
(f)), these formulae have to be modified for taking into account the boundary conditions in the fashion of the ghost fluid meth-
od for elliptic equations [18]. For example, on the north face:
Z

Cib;e
i;j
[Cib;w

iþ1;j

@u
@y

dx ffi Dxib;e
i;j þ Dxib;w

iþ1;j

� �@u
@y






i;j

; ð55Þ
with the one-sided differential quotient:
@u
@y






i;j

¼
u xi; yib

i;j

� �
� ui;j

1
2 hu

i;jDyj
: ð56Þ
Note that in (55) the integration areas Dxib;e
i;j and Dxib;w

iþ1;j on the solid face are yet to be defined.
For completeness, we mention that the discretization of the viscous term has a five-point structure, and in the case where

hu
i;jþ1 ¼ 0, it has a form analogous to (39):
Z

Cu
i;j

ru � ndS ffi KWði; jÞui�1;j þKEði; jÞuiþ1;j þKPði; jÞui;j þKSði; jÞui;j�1 þ Sib;v
i;j ; ð57Þ
with:
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KWði; jÞ ¼
hu

i;jDyjh
u
i�1;j

V i;j=Dyj
; KEði; jÞ ¼

hu
i;jDyjh

u
iþ1;j

V iþ1;j=Dyj
; ð58aÞ

KSði; jÞ ¼
hv

i;jDxi þ hv
iþ1;jDxiþ1

hu
i;jDyj þ hu

i;j�1Dyj�1
; ð58bÞ

KPði; jÞ ¼ �
hu

i;j

� �2
Dyj

Vi;j=Dyj
�

hu
i;j

� �2
Dyj
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We observe that the discretization is symmetric (i.e. KWðiþ 1; jÞ ¼ KEði; jÞ), as it is the case for the MAC method.
For completing our discretization of the viscous terms, we have to define the values of the integration areas Dxib;e

i;j and
Dxib;w

iþ1;j for the shear stress flux at the boundary (55). These values will be determined independently for each type of cut-cells
in Fig. 6, by requiring that the shear stress fluxes at the immersed boundary correspond to the discretization of the shear part
of the hydrodynamic forces (9). This is equivalent to requiring that total momentum be discretely conserved on the LS-STAG
mesh.

3.4.3. Discrete conservation of total momentum and computation of hydrodynamic forces
As done in Section 3.3 for the kinetic energy, the total momentum PðtÞ ¼

R
Xf v dV is discretized with the trapezoidal rule

to give:
PðtÞ ffi PhðtÞ ¼ 1TMU þ 1TMibUib; ð59Þ
where 1 is the constant vector. The conservation equation for PhðtÞ is obtained by multiplication of the semi-discrete scheme
(23) with vector 1:
dPh

dt
¼ �½1TC½U�U þ 1TSib;c� � ½1TGP � 1Tm KU þ Sib;v

� �
�: ð60Þ
This expression is the semi-discrete version of Eq. (8b): the quadratic terms in the RHS correspond to the summation of the
convective, pressure and viscous fluxes from all control volumes. Since the property of local conservativity of the fluxes holds
at fluid faces, all terms cancel out except those appearing at solid boundary faces of the cut-cells. These remaining terms
should correspond to the forces that act on the immersed boundary.

Most relevant to our discussion is the discretization of the viscous fluxes, and thus we will focus on the viscous force: the
LS-STAG method we be qualified to be momentum conserving if the non-zero terms in sum ½1TGP � 1TmðKU þ Sib;vÞ� correspond
to the discretization of the hydrodynamic force (9). This discretization is obtained by approximating the surface integrals in
(9b) and (9a), respectively, as:
Fh
x ¼

X
Cut-cellsXi;j

½nxDS�ibi;j pi;j � m
@u
@x






i;j

 !
� mQuadib

i;j
@u
@y

ey � n
� �

; ð61aÞ

Fh
y ¼

X
Cut-cellsXi;j

�mQuadib
i;j

@v
@x

ex � n
� �

þ ½nyDS�ibi;j pi;j � m
@v
@y






i;j

 !
: ð61bÞ
In these equations, the quadrature of the pressure and normal stress term has been performed by observing that these terms
are constant in the cut-cells and using the midpoint rule; as a result the same formula is valid for all types of cut-cells. In
contrast, the quadrature of the shear stresses (denoted Quadib

i;j) has to be adapted to each type of cut-cells. This quadrature,
based on the location of the shear stresses in Fig. 6 and the trapezoidal rule, is fully described in Appendix B. For our discus-
sion, it is relevant to note that the portion of drag and lift acting on the solid part of the trapezoidal cut-cell of Fig. 6(b) is,
respectively:
Fh
x
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; ð62aÞ
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: ð62bÞ
Now, let us examine closely the viscous part of the global momentum equation (60), whose contribution in the x direction
that reads:
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½1TGP � 1TmðKU þ Sib;vÞ�jx ¼
X

CVs Xu
i;j

Z
Cu

i;j

p� m
@u
@x

� �
ex � ndS�

Z
Cu

i;j

m
@u
@y

ey � ndS; ð63Þ
should correspond to the drag force Fh
x given by (61a). The easiest part to inspect is the contribution of the normal stresses,

since a unique formula (Eqs. (30) and (50)) is valid for these terms in all computational cells:
X
CVs Xu

i;j

hu
i;jDyj piþ1;j � pi;j � m

@u
@x






iþ1;j
� @u
@x






i;j

" # !
:

After reindexation for making appear a sum on the computational cells, we observe that pressure and normal stresses cancel
out in fluid cells such that hu

i;j ¼ hu
i�1;j ¼ 1, and only the following terms in the cut-cells do remain:
X
Cut-cells Xi;j

hu
i�1;j � hu

i;j

� �
Dyj pi;j � m

@u
@x






i;j

 !
:

This sum is exactly the contribution of the normal stresses to the discrete drag force (61a). A similar inspection holds for the
lift component (61b), ensuring thus that the normal stress contribution to the total momentum budget is recovered.

For the shear stress contribution, the fluxes at all fluid faces cancel out and only fluxes at the immersed boundary remains
in sum (63), their exact expression depending on the type of cut-cell. On the solid part Cib;w

i;j [ Cib;e
i;j of cut-cell Xi;j in Fig. 2, we

use Eq. (55) for writing the shear stress contribution as:
�m Dxib;w
i;j

@u
@y






i�1;j
þ Dxib;e

i;j

@u
@y






i;j

" #
:

After comparison with the drag force (62a), we are able to unambiguously determine the integration areas of the shear stress
as:
Dxib;w
i;j ¼ Dxib;e

i;j ¼
1
2

Dxi: ð64Þ
A similar inspection for the other type of cut-cells gives the values reported in Table 2 for the shear stress fluxR
Cib;e

i;j
[Cib;w

iþ1;j
@u=@ydx. Similar values can be deduced for the shear stress flux in the y-momentum equation

R
Cib;n

i;j
[Cib;s

i;jþ1
@v=@xdy.

This will finish the description of what will be subsequently be called the ‘‘original” LS-STAG discretization of the viscous
stress.

3.4.4. A ‘‘complete” discretization of the shear stresses based on the strict conservation of total momentum
However, if we further investigate the correspondence between the shear stress fluxes at the immersed boundary in the

momentum equation and the discrete shear force (61), one may notice slight discrepancies. For example in the trapezoidal
cut-cell of Fig. 6(b), the shear stress fluxes at the immersed boundary that appear in the momentum equation for ui;j and v i;j�1

are, respectively:
� mDxi

2
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@y






i�1;j
þ @u
@y






i;j

" #
and 0: ð65Þ
If we compare these terms with the shear force in (62a) and (62b), we observe that the following part is missing from the
momentum equation for v i;j�1:
�
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" #
: ð66Þ
Note that the contribution of this term to the global lift force should be small, since it vanishes when the solid face is hor-
izontal hu

i�1;j ¼ hu
i;j

� �
. Nevertheless, the ‘‘original” LS-STAG method does not completely conserve the global momentum. The
tion areas for the shear stress flux (55) on the solid part of the cut-cell of Fig. 6. The integration areas for the other cut-cells of Fig. 3 can be easily deduced
e ones displayed.
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reason is that for building this discretization we have assumed that the shear stress discretization yields a five-point stencil,
and thus the contribution of terms @v=@xji�1;j and @v=@xji;j should be ignored in the stencil for v i;j�1.

An alternate version of the LS-STAG method would be to retain terms such as (66) in the discretization. The difficulty is
now to compute the new terms that appear in the discrete momentum equations. For example, the term @v=@xji;j in Fig. 6(b)
may only be computed if we know the type of the neighboring cut-cell Xiþ1;j. If Xiþ1;j is pentagonal, as in Fig. 4(d), then the
shear stress can be computed with the one-sided formula:
@v
@x






i;j

¼
v iþ1;j � v xib

i;j ; yj

� �
1
2 hv

iþ1;jDxiþ1
: ð67Þ
The only other possibility is that Xiþ1;j be a pentagonal cell, as in Fig. 4(a). In this case, we cannot use formula (67). Instead,
we simply set @v=@xji;j ¼ 0, as it is verified when the solid face is horizontal.

This alternate version, the we will subsequently call the ‘‘complete” LS-STAG method, has the ability to be strictly
momentum conserving. However, compared to the ‘‘original” LS-STAG method, the presence of the supplementary shear
stress terms on the solid boundary severely complicates the coding of the method, and it also enlarges the size of the stencil.
In the computations presented in the next section, these terms will be handled with an explicit time-stepping. These com-
putations will also prove that the ‘‘complete” LS-STAG method shows only a marginal improvement over the ‘‘original”
method, and we recommend thus the latter method.
3.5. Time stepping method and solution of the linear systems

The time integration of the differential algebraic system (18) and (23) is performed with a semi-implicit projection meth-
od based on the Adams–Bashforth/second-order backward differentiation formula (AB/BDF 2) scheme. This projection
scheme is defined by the following two steps:
M3eU � 4Un þ Un�1

2Dt
þ 2C½Un�Un � C½Un�1�Un�1 �DTPn � mKeU ¼ 0; ð68Þ
where eU is a prediction of the velocity at time tnþ1 ¼ ðnþ 1ÞDt, then:
3
2
MUnþ1 � eU

Dt
�DTðPnþ1 � PnÞ ¼ 0; ð69aÞ

DUnþ1 þ Uib;nþ1 ¼ 0: ð69bÞ
Numerical tests in [6] shows that this scheme is OðDt2Þ accurate for both velocity and pressure.
The projection step (69) leads to solving following Poisson equation for the pressure potential U ¼ 2DtðPnþ1 � PnÞ=3:
AU ¼ DeU þ Uib;nþ1; A � �DM�1DT; ð70Þ
which is a symmetric linear system whose five-point stencil reads:
AEði; jÞ ¼
hu

i;jDyj

� �2

1
2 Vi;j þ 1

2 Viþ1;j
; AWði; jÞ ¼ AEði� 1; jÞ; ð71aÞ

ANði; jÞ ¼
hv

i;jDxi

� �2

1
2 Vi;j þ 1

2 Vi;jþ1
; ASði; jÞ ¼ ANði; j� 1Þ; ð71bÞ

APði; jÞ ¼ �AEði; jÞ � AWði; jÞ � ANði; jÞ � ASði; jÞ: ð71cÞ
In the case of a Cartesian fluid cell, the usual pressure equation of the MAC method is recovered. We mention that the pres-
sure equation (70) is valid in the whole computational domain, fluid or solid cells alike, and in the latter cells the linear sys-
tem reads:
0�Ui;j ¼ 0; ð72Þ
which is a consequence of the fact that the pressure is defined up to an additive constant. In order to alleviate this indeter-
mination in actual computations, we add to the diagonal coefficient APði; jÞ a small real constant d whose magnitude has the
order of the machine roundoff, and we solve (70) in the whole computational domain with a standard solver for elliptic
equations on Cartesian grids. In the computations we present next, we have used the black-box multigrid/BiCGSTAB solver
of van Kan et al. [62]. No modifications of the solver had to be undertaken for taking the immersed boundary into account,
since we did not observe a significant loss in the performance of the solver when compared to Cartesian computations. For
the simulations presented in the following sections, the pressure equation was typically solved in 2–3 iterations with this
solver.
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The prediction step (68) amounts to solving a Helmholtz equation for eU , which is performed by the same black-box mul-
tigrid/BiCGSTAB solver. This linear system is easier to solve than the pressure equation since its diagonal dominance in-
creases with the Reynolds number.

4. Numerical results

4.1. Taylor–Couette flow

First, the spatial accuracy of the LS-STAG method is assessed on the Taylor–Couette flow between two concentric circular
cylinders, as described in Fig. 7(left). The flow dynamics is governed by the Taylor number Ta, which is the ratio between the
centrifugal force and the viscous force:
Fig. 7.
C2 of ce
R1 ¼ 1
Ta ¼
x2 R1þR2

2

� 	
ðR2 � R1Þ3

m2 : ð73Þ
Below the stability threshold Tac ¼ 1712 [23], the steady stable solution is purely orthoradial, such that its Cartesian com-

ponents read for r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy� ycÞ

2
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2
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 !
ðy� ycÞ; ð74aÞ
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2
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; ð74cÞ
where K ¼ xR2
1

R2
2�R2

1
.

In order to build the level-set function /ðx; yÞ that represents the fluid domain Xf , we have used the Constructive Solid
Geometry (CSG) method for constructing complex domains out of basic geometries such as circles, hyperplanes and spheres,
which are sufficiently simple for having an analytical expression for their level-set function [25,47]. The boolean CSG oper-
ations on basic geometries such as intersection, union or complementary part can then be expressed as algebraic operations
on their level-set functions [47]. For example, let X1 and X2 be the inner region of cylinders C1 and C2, whose level-set func-
tion is, respectively:
/1ðx; yÞ ¼ R1 � r; ð75aÞ
/2ðx; yÞ ¼ R2 � r: ð75bÞ
Then, the fluid domain of the Taylor–Couette geometry can be constructed as Xf ¼ X2 nX1, and its level-set function is sim-
ply /ðx; yÞ ¼maxð/2ðx; yÞ;�/1ðx; yÞÞ.

The computational domain is a square of side length 10R1, covered with a uniform mesh of N square computational cells
of size h in each direction (see Fig. 7(right)). The center of the concentric cylinders is set at xc ¼ 0:013; yc ¼ 0:023 slightly off
the center of the computational domain, such as it never corresponds to a corner or centroid of a computational cell. Thus,
the numerical error we measure are free of any superconvergence effects, since the natural symmetries of the meshes and
-5 0 5-5

0

5

Geometry and computational domain for the Taylor–Couette flow. At left, the fluid domain Xf is confined between two concentric cylinders C1 and
nter ðxc; ycÞ, radius R1 and R2 ¼ 4R1, respectively, where only the inner cylinder C1 moves with the angular velocity x. At right, the LS-STAG mesh for

and N ¼ 50 cells in each direction.
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the computational solution are broken. For the flow at Ta ¼ 1000, we have compared the results of the two variants of the LS-
STAG method (original and complete, see Section 3.4) with the so-called staircase method, which corresponds to a stepwise
approximation of complex geometries with Cartesian cells. This last method is easily obtained from our numerical code by
imposing the cell-face fraction ratios to be equal to 1 in the cut-cells, while the discretization in the Cartesian cells is un-
changed. We will see that even though the cut-cells represent only a small fraction of the computational cells, these mod-
ifications will greatly affect the numerical solution in the whole fluid domain.

For the streamwise velocity u, we have measured the L1 spatial error up to the cut-cells, i.e.:
Fig. 8.
EhðuÞ ¼ max
CVs Xu

i;j

ui;j � uex xi; yj þ
1
2

hu
i;jDyj
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; ð76Þ
whereas for the pressure, due to the indefinite location of the pressure in the cut-cells, we have reported the L1 error in the
Cartesian cells only. Fig. 8(left) shows the error for the velocity measured on 90% of the fluid cells away from the immersed
boundaries. The two LS-STAG variants shows a similar second-order accuracy, much better than the first-order accuracy of
the staircase method. When the error of the LS-STAG method is measured on the whole computational domain (Fig. 8(right)),
the L1 error is slightly higher, showing that maximal error occurs in the vicinity of the cut-cells, and the order of accuracy
drops to being superlinear only. This is certainly an effect of the piecewise constant approximation of the normal stresses
and the pressure in the cut-cells. A similar trend is observed for the L1 error of the pressure displayed in Fig. 9. Fig. 10 shows
the pointwise error at mesh points along the horizontal radius, for x 2 ½R1;R2�. Firstly, we observe that the crude treatment of
the immersed boundaries for the staircase method pollutes the solution in the whole fluid domain, whereas for the LS-STAG
methods the largest errors stay confined to the vicinity of the immersed boundaries, and most notably to the inner moving
cylinder C1. Secondly, we observe that the complete variant of the LS-STAG method (which conserves global momentum)
gives only a marginal improvement in terms of pointwise accuracy.

4.2. Flow past a circular cylinder

The robustness of the LS-STAG method and its ability to compute unsteady flows at higher Reynolds number is now eval-
uated on the flow past a circular cylinder in a free-stream. The Reynolds number Re is based on the free-stream velocity U1
and the diameter D of the domain. The flow configuration is described in Fig. 11(left). In all our simulations, the upstream
boundary is set at the distance Xu ¼ 8D from the obstacle, the outflow boundary at distance Xd ¼ 15D, and the blockage ratio
D=A is equal to 1=12. Our previous studies [7,8] have shown that this computational domain was sufficiently wide for obtain-
ing results that are independent of the domain size. In order to make a grid refinement study, we used a sequence of non-
uniform meshes whose salient properties are summarized in Table 3. All meshes use a similar block uniform grid of cell size
h=D in the vicinity of the cylinder, as shown in Fig. 11(right). Our simulations with mesh M4 were found to give accurate
results for the range of Reynolds number ½40� 1000� we considered. The other meshes range from very coarse (mesh M1
with only 12 cut-cells around the immersed boundary, which is used for the steady flow at Re ¼ 40) to extremely fine (mesh
M5 with more than 400 cut-cells). This last mesh is mainly used for validating the results obtained on coarser meshes. Table
3 also reports the proportion of the various type of computational cells (solid, Cartesian or cut-cells) found in these meshes.
We observe that the proportion of solid cells is very low and diminishes as the meshes gets bigger. Thus, the additional CPU
and memory costs that their treatment entails is negligible compared to a body-fitted method. In the meshes we used for the
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Fig. 11. Computational domain and grid for the flow past a circular cylinder.
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Taylor–Couette flow, the proportion of cut-cells was similar, while the proportion of solid cells was around 50% whatever the
size of the mesh. At last, Table 4 shows that the cut-cells almost have an equal proportion of triangular, trapezoidal and pen-
tagonal cells: thus, an accurate discretization should be performed for all cells in Fig. 3.



Table 3
Salient properties of the meshes used for the circular cylinder flow. The percentage of the various type of cells with respect to their total number is given in
brackets. The values of the time step are valid for all computations of Sections 4.2 and 4.3.

Mesh Nx � Ny h=D DtU1=D Type of cells

Number of cells Cartesian cells Solid cells Cut-cells

M1 36� 34 0.32 10�2 1224 1208 (98.7%) 4 (0.3%) 12 (1.0%)

M2 74� 65 0.16 10�2 4810 4767 (99.1%) 19 (0.4%) 24 (0.5%)

M3 150� 130 0.08 10�2 19,500 19,350 (99.2%) 100 (0.5%) 50 (0.3%)

M4 300� 260 0.04 10�2a 78,000 77,460 (99.3%) 440 (0.6%) 100 (0.1%)

M5 550� 350 0.01 2� 10�3b 192,500 184,452 (95.8%) 7644 (4.0%) 404 (0.2%)

a Dt ¼ 5� 10�3D=U1 for the computations at Re ¼ 1000.
b Dt ¼ 10�3D=U1 during the initial transients ðtU1=D 2 ½0;1�Þ for the computations at Re ¼ 1000.

Table 4
Inventory of the three basic types of cut-cells found in the Taylor–Couette (T-C) and circular cylinder (C-C) meshes, and their percentage with respect to the
total number of cut-cells.

Simulation Total number of cut-cells Type cut-cells

Triangular cells Trapezoidal cells Pentagonal cells

T-C, N ¼ 100 400 116 (29.0%) 168 (42.0%) 116 (29.0%)
T-C, N ¼ 300 1192 344 (28.9%) 504 (42.3%) 344 (28.9%)

C-C, M2 24 4 (16.7%) 12 (50.0%) 8 (33.3%)
C-C, M4 100 28 (28.0%) 40 (40.0%) 32 (32.0%)

Y. Cheny, O. Botella / Journal of Computational Physics 229 (2010) 1043–1076 1063
For comparing our results on the circular cylinder flow, we have selected well-established numerical investigations con-
ducted with boundary-fitted [27,5,26], IB [35] and cut-cell methods [40]. Experimental results are taken from the mono-
graph by Zdravkovich [67]. Following the derivation of the CFL condition on unstructured mesh in [4], the CFL number in
fluid cell Xi;j is:
CFLi;j ¼ ð�ui;jÞþ þ ð��ui�1;jÞþ þ ð�v i;jÞþ þ ð��v i;j�1Þþ þ Uib
i;j

� �þ� �
Dt
Vi;j

; ð77Þ
where ð�Þþ ¼maxð�;0Þ. This condition reduces to the conventional CFL condition in Cartesian fluid cells. For the values of the
time step given in Table 3, all computations were performed with a maximal value of CFL equal to 0.5. We have observed that
this value is not obtained in a cut-cell, but rather in a Cartesian cell away from the wake region. This shows that the occur-
rence of small cut-cells in the mesh does not hamper the stability properties of our semi-implicit time-stepping.

First, we performed a grid convergence study of the various methods (staircase, LS-STAG and LS-STAG complete) for the
steady flow at Re ¼ 40. For both variants of the LS-STAG method, the forces were computed with the same quadrature (Eq.
(61)). Fig. 12 shows the spatial convergence of the drag coefficient CD ¼ Fx=

1
2 qU2

1 and the length of the recirculation bubble
Lw=D. The staircase method gives very inaccurate results on the coarser meshes (no recirculation zone is observed on mesh
M1), whereas the LS-STAG methods gives acceptable results for all meshes. As shown in Table 5, the results of both LS-STAG
methods compare well with established results from the literature (which are typically in the range ½1:50� 1:54�) and, once
again, the difference between the two variants is undistinguishable. From now on, we will only report computations per-
formed with the original LS-STAG method.

Unsteady flows at Re ¼ 100, 200 and 1000 have been computed on the M4 and M5 meshes. For breaking the symmetry of
the flow and efficiently triggering the vortex shedding, we use as initial condition a discontinuous flow field equal to U1 in
the upper half of the domain, and 0 in the lower half. The flow reaches an asymptotically periodic state at t ¼ 50D=U1, then
we start computing the force coefficients at each time step until t ¼ 350D=U1. The Strouhal number St is computed as the
first harmonic of the power spectrum of the lift coefficient, with a frequency resolution of 	1:67� 10�3 since the length of
the time signal is equal to 300 units. Tables 6 and 7 give salient results computed with the LS-STAG and staircase method. On
the M4 mesh for Re ¼ 100 and 200 and on the M5 mesh for Re ¼ 1000, the LS-STAG method gives excellent agreement with
the published results. It is also quite remarkable to observe that the staircase method gives marginally acceptable results,
even for Re ¼ 1000. This is certainly due to the fact that the staircase method inherits the conservation and stability prop-
erties of the LS-STAG method, and only the treatment of the immersed boundary differs.
4.3. Flow past a circular cylinder with forced oscillatory rotations

For assessing the validity of our treatment of non-homogeneous boundary conditions, we have compute the flow past a
circular cylinder with forced rotary oscillations given by the angular velocity:



Table 5
Results for the flow at Re ¼ 40 obtained on the two finest meshes and comparison with established results from the literature.

Lw=D CD

M4, original 2.300 1.500
M4, complete 2.300 1.500
M4, staircase 2.101 1.527
M5, original 2.299 1.508
M5, complete 2.299 1.508
M5, staircase 2.226 1.559

Experiments [67] – 1.48–1.70
Bergmann et al. [5] 2.26 1.682
Henderson [27] – 1.545
He et al. [26] – 1.505
Linnick and Fasel [35] 2.23 1.54
Mittal et al. [40] – 1.53

Table 6
Comparison of time averaged drag coefficient CD and corresponding oscillation amplitude 	DCD with established results from the literature.

Re 100 200 1000

M4 1:322	 0:009 1:332	 0:044 1:493	 0:227
M5 1:317	 0:009 1:327	 0:045 1:530	 0:229
M4, staircase 1:323	 0:009 1:346	 0:044 1:610	 0:198

Experiments [67] 1.21–1.41 – –
Bergmann et al. [5] 1.410 1.390 1.505
Henderson [27] 1.350 1.341 1.509
He et al. [26] 1.353 1.356 1.519
Linnick and Fasel [35] 1:34	 0:009 1:34	 0:044 –
Mittal et al. [40] 1.35 – 1.45
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Fig. 12. Drag coefficient and recirculation bubble length for the steady flow at Re ¼ 40 computed with the various meshes of Table 3.
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xðtÞ ¼ x0 sin 2pSet
U1
D

� �
; ð78Þ
where the two forcing parameters are the amplitude x0 of the angular velocity and the forcing Strouhal number Srme. This
forcing has been introduced by Tokumaru and Dimotakis [58], who observed experimentally for the flow at Re ¼ 15;000 a
drag reduction as high as 80% for certain values of these forcing parameters. In the computational studies of Refs. [26,5],
these two parameters have been used as control parameters for drag minimisation in the 2D laminar regime. For the flow





Table 9
Peak value of the lift coefficient Cmax

L for unforced and forced flows at various Reynolds number.

Re 100 200 1000

ðx0; SeÞ (0;0) (0;0) (6.0;0.74) (8.50;0.74) (0;0) (5.50;0.625)

M4 0.348 0690 0.358 0.510 1.305 0.054
M5 0.349 0.710 0.337 0.491 1.482 0.103
M4, staircase 0.332 0.669 0.330 0.537 1.332 1.037

Norberg [44] 0.28–0.41 0.56–0.85 – – – –
Linnick and Fasel [35] 0.333 0.70 – – – –

Fig. 14. Vorticity contours in the wake of the cylinder at Re ¼ 1000, computed by the LS-STAG method on the M5 mesh.
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ding of the unforced flow has been dramatically altered by the optimal oscillatory rotations, leading to a quasi-symmetric
flow pattern which is much different than the unstable steady solution. This last figure shows also that vorticity production
is confined to the near vicinity of the cylinder, and further illustrates the high fidelity treatment of the immersed boundary of
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the LS-STAG method. The staircase method, on the other hand, gives inaccurate values of the force signals amplitude (see
Tables 8 and 9), and its suitability for being the basic solver in an optimal control loop is questionable.
4.4. Application to flows with immersed moving boundaries

In order to show the versatility of the LS-STAG method, we report in this section a first attempt for computing flows with
moving immersed boundaries. Indeed, the computation of such flows on fixed Cartesian grids may become a competitive
alternative, in terms of CPU time and accuracy, to body-conformal methods that need frequent mesh and solution updates
during the flow computation (see the reviews [11,57] and references therein). First, we present the main modifications of the
LS-STAG method for handling moving boundaries. Then, we apply the method on a flow with prescribed boundary motion:
the transverse oscillation of a cylinder in a free-stream [20,22].
4.4.1. Modifications of the LS-STAG method for immersed moving boundaries
The LS-STAG method for moving boundaries has common ground with the arbitrary Lagrangian–Eulerian (ALE) method

widely used by finite-volume methods on body-conformal meshes [11]. The ALE method considers a computational domain
that tracks the moving boundary, such that the grid follows the boundary motion in the Lagrangian fashion, while it is held
fixed in a Eulerian manner sufficiently far from it. The ALE equations of the flow motion written in the computational domain
are similar to the Navier–Stokes equations (1) and (2) except that the convective term now reads:
Z

CðtÞ
ð½v � vg� � nÞv dS;
where vg is the computational domain (or grid) velocity, which is related to the arbitrary motion of the mesh nodes. In a
series of papers, Farhat and co-workers [33,21,16,15] have shown that a ALE numerical scheme preserves the accuracy
and stability of its fixed grid counterpart if the grid velocity and mesh update procedure are designed such that the so-called
geometric conservation law (GCL):
d
dt

Z
XðtÞ

dV ¼
Z

CðtÞ
vg � ndS; ð79Þ
is enforced at the discrete level. This equation is obtained by requiring that a uniform flow is solution to the ALE equations,
and states that the change in volume of a cell during a time interval must be equal to the volume that has been swept by the
cell boundary.

The enforcement of the GCL is a challenging task when the whole computational grid is deformed by the motion of its
boundary. For the LS-STAG method in contrast, this condition is easier to fulfill because only the grid nodes on the solid part
Cib

i;jðtÞ of a cut-cell are moving. Thus, the ALE convective flux through the solid faces of control volume Xu
i;jðtÞ is:
Z

Cib;e
i;j
ðtÞ[Cib;w

iþ1;j
ðtÞ
½v � vg� � nib

i;j

� �
udS; ð80Þ
while the expression on the other faces is unchanged since the normal motion of the fluid cell faces is zero. The discretization
of (80) follows the line of the skew-symmetric discretization of Section 3.3 and Appendix A. For example, the equivalent of
Eq. (42a) for the half solid face Cib;e

i;j ðtÞ of control volume Xu
i;jðtÞ in Fig. 2 is:
Z

Cib;e
i;j
ðtÞ
½v � vg� � nib

i;j

� �
udS ffi

Uib
i;j � Ug

i;j

2
1
2

ui;j þ
1
2

u xi; yib
i;j

� �� �
; ð81Þ
where Ug
i;j is the discrete grid flux for cut-cell Xi;jðtÞ, that will be defined such that a discrete GCL be enforced.

For our computations with moving boundaries, we have considered a first-order variant of the projection scheme (68) and
(69), whose prediction step reads:
Mnþ1 eU �MnUn

Dt
þ C½Un � Ug;n�Un � mKnþ1 eU ¼ 0; ð82Þ
where the coefficients of the scheme are now time-dependent and have to be computed with the level-set of the immersed
boundary at the corresponding time level. The discrete grid flux Ug;n is then computed by requiring that the constant solution
U ¼ 1 be a solution to the discrete scheme (82), as it is already observed on fixed grids. In the cut-cells, this requirement
leads to:
½Mx�nþ1
P ði; jÞ � ½Mx�nPði; jÞ

Dt
�

Ug;n
i;j þ Ug;n

iþ1;j

2
¼ 0; ð83Þ
and, by using the definition (25) of the mass matrix, we completely determine the discrete grid flux for cut-cell Xnþ1
i;j as:
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Ug;n
i;j ¼

Vnþ1
i;j � Vn

i;j

Dt
: ð84Þ
This relation is the discrete version of the GCL (79) for the implicit Euler scheme (82); the projection step (69) does not alter
this condition. At each time cycle, the discrete grid flux Ug;n

i;j can be easily computed from the discrete GCL and incorporated
to the convective discretization of Appendix A in the fashion of Eq. (81).

Another issue which is mostly relevant to discretizations on fixed Cartesian grid is the occurrence of ‘‘freshly cleared”
cells, fluid cells which were inside the solid at the previous time step. In these cells, the use of conventional time-stepping
is not possible, and several ad hoc procedure are proposed in [60,61,3,9] for approximating the flow variables. In the present
paper, if the control volume Xu;nþ1

i;j is ‘‘freshly cleared” (i.e. hu;n
i;j ¼ 0 and hu;nþ1

i;j > 0), then we simply set the provisional velocity
~ui;j equal to the boundary velocity instead of using the prediction step (82), while the projection step is unchanged. Note that
this simple procedure does not guaranty the discrete conservation of momentum or kinetic energy. A more accurate proce-
dure, left for future work, would be to use in the freshly cleared cells a fully implicit semi-Lagrangian time-stepping [50].

Nevertheless, we have checked the spatial accuracy of the present implementation of the method by designing a test
problem with moving boundaries as done in Refs. [61,65]. We have considered a rigid circular cylinder of diameter D that
oscillates horizontally in a square computational domain of dimension 3D� 3D with no-slip walls, such that the prescribed
motion of the cylinder center reads:
_xcðtÞ ¼ �Umax sin 2pUmax

D

� �
; _ycðtÞ ¼ 0; ð85Þ

xcð0Þ ¼
D

2p
; ycð0Þ ¼ 0; ð86Þ
where Umax is the maximal velocity. Simulations have been performed at Re ¼ UmaxD=m ¼ 100 on four uniform grids:
30� 30; 90� 90; 150� 150 and 450� 450, the latter being used as the reference solution. A small time step of
Dt ¼ 10�4D=Umax has been chosen in order to avoid temporal errors effect. The flow has been simulated for one oscillation
period, and the L1 norm of the spatial error obtained at the end of the computations is shown in Fig. 15. This figure clearly
shows that first-order accuracy is obtained for both component of the velocity. Thus, we observe only a slight decrease in
accuracy compared to the case of stationary immersed boundaries, where superlinear convergence in the L1 norm was ob-
served (see Fig. 8).
4.4.2. Application: transversely oscillating cylinder in a free-stream
To validate our method we computed the flow past a cylinder undergoing prescribed transverse oscillation in a free-

stream. This flow has first been studied experimentally by Gu et al. [20]. Numerical computations have then been carried
out by Lu and Dalton [37] and Guilmineau and Queutey [22] with a body-conformal method in the inertial frame of refer-
ence. Subsequently, this flow has become a popular benchmark for both IBM [65,31] and cut-cell methods [61,9].

The computational domain and boundary conditions are the same as for the stationary cylinder flow of Section 4.2. The
flow parameters match the ones used in the above references. The transverse motion of the cylinder center is given by:
10
−2

10
−1

10
010

−3

10
−2

10
−1

10
0

h

E
h
(u)

E
h
(v)

1
st

 order slope

Fig. 15. L1 norm of the error for the horizontally oscillating cylinder test problem.



ycðtÞ ¼ A; t < 10
D

U1
; ð87aÞ

ycðtÞ ¼ A cos 2pSe t
U1
D
� 10

� �� �
; t P 10

D
U1

; ð87bÞ
with the oscillations amplitude A ¼ 0:2D and Se is the exciting Strouhal number. We considered a series of computations on
the M4 mesh (see Table 3) at Re ¼ 185, for A ¼ 0:2D and Se=S0 2 ½0:8;1:2� where S0 is the natural frequency of the vortex
shedding, which has been computed as S0 ¼ 0:201 with the ER1 time-stepping. The value of the time step is
Dt ¼ 5� 10�3D=U1.

When the immersed body is moving, the CFL number (77) has to be corrected with the grid velocity as done in Eq. (81) for
the ALE convective fluxes:
CFLi;j ¼ ð�ui;jÞþ þ ð��ui�1;jÞþ þ ð�v i;jÞþ þ ð��v i;j�1Þþ þ Uib
i;j � Ug

i;j

� �þ� �
Dt
Vi;j

: ð88Þ
In addition, we mention that the fluid velocities in the cut-cells take values close to the velocity of the immersed boundary.
Hence, in order to avoid numerical instabilities caused by the motion of the immersed body, a CFL number based on the kine-
matics of the IB has to be constructed, for example [19]:
CFLib
i;j ¼

uib
i;j




 


Dt

Dxi
þ

v ib
i;j




 


Dt

Dyj
: ð89Þ
The condition maxi;jCFLib
i;j < 1 ensures that the body never traverses an entire computational cell within one time step. Since

the motion of the immersed body is prescribed in the present work, this condition can be verified prior to the computations.
We have verified that the kinematics CFL condition based on (89) is always much less restrictive than the fluid dynamics
condition (88), and thus does not hamper the stability of the method: for example, for the case Se=S0 ¼ 1:2 we observed that
maxi;jCFLib

i;j ’ 0:04 while maxi;jCFLi;j ’ 0:3.
Fig. 16 shows the time evolution of the force coefficients for increasing values of the forcing frequencies. In particular, we

observe a frequency ‘‘lock on” at all values of the forcing frequencies, and the presence of a higher harmonic when Se=S0 P 1.
These results agree very well with previous studies [37,22,65]. To give a more quantitative evaluation of this series of sim-
ulations, Fig. 17 shows that the mean force coefficients are in very good agreement with both body-conformal (in the non-
inertial frame of the cylinder) [22] and IBM [65] computations. Finally, for the case Se=S0 ¼ 1:2 that shows the most complex
dynamics, Table 10 displays a grid refinement study for the computation of the force coefficients. In order to keep the time
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Fig. 17. Time averaged force coefficients for the flow past an oscillating cylinder in a free-stream: CD (solid line), Crms
D (dash-dot line) and Crms

L (dot line). The
symbols ‘filled right triangle’ and ‘open circle’ represent data obtained by Yang and Balaras [65] and Guilmineau and Queutey [22], respectively.

Table 10
Time averaged force coefficients for the case Se=S0 ¼ 1:2 obtained on the series of meshes described in Table 3.

CD Crms
D Crms

L

M1 1.309 0.366 0.884
M2 1.202 0.101 0.754
M3 1.386 0.124 0.889
M4 1.422 0.142 0.941
M5 1.387 0.132 0.975

IBM, 800� 640 cells, h ¼ 0:005D [65] 1.426 0.128 0.964
O-type curvilinear grid, 180� 120 cells, h ¼ 0:001D [22] 1.35 0.129 0.931
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discretization error (which is of first-order for moving boundaries problems) comparable for all the meshes, all simulations
have been performed with a CFL number equal to 0.3. We observes that on the 2 finest meshes, the discrepancy of the results
is inferior to 3% for the mean drag coefficient, and 4% for the root-mean-square lift coefficient. This level of grid sensitivity is
comparable to the one observed in [22].

Finally, we have examined the quality of our computations of the local forces on the moving body’s surface. In effect, the
accuracy and smoothness of their computation is of great importance for the application of the LS-STAG method to fluid–
structure interaction problems. Fig. 18 displays the comparison of the local pressure and vorticity distributions with the ref-
erence data of Guilmineau and Queutey [22] obtained on a body-fitted grid. As Yang and Balaras [65] observed with their
IBM computations, it is the local shear that is the most sensitive to grid resolution, most notably in the vicinity of local
extremas. These discrepancies however diminish with mesh refinement, giving a smooth and accurate distribution on the
M5 mesh. We also mention the body-fitted grid of Ref. [22] has a local grid spacing normal to the boundary equal to
h ¼ 0:001D, which is 10 times smaller than the resolution of our finest mesh (M5, see Table 3).

4.5. Evaluation of the computational efficiency of the LS-STAG method

There are essentially two features that make immersed boundary methods potentially more attractive than traditional
body fitted methods: the quick design of quality meshes for highly complex geometries [36] and the lower computational
cost of the flow simulations. This last feature is well documented for simple geometries, for which Cartesian flow solvers
takes only a fraction of the CPU time of the more versatile body fitted solvers [38]. In contrast, the CPU cost of IBM simula-
tions with a Cartesian solver is not so well documented. The additional overhead for handling complex geometries depends
greatly on the IBM treatment and the cleverness of the code implementation, and in some cases may take a substantial part
of the solution procedure. For the LS-STAG method, we observed that this overhead is associated to the computation of the
geometric parameters of the fluid cells when constructing the discrete systems, and to the additional stiffness of the systems
caused by the presence of small cut-cells.

This part is devoted to evaluating the current performance of the LS-STAG code used for all the computations presented in
this article, and compare them with a widely available commercial code: FLUENT. We have chosen a well established bench-
mark problem: the unsteady flow past a square cylinder at Re ¼ 100. For this geometry, both codes are able to use the same
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computational parameters and boundary-fitted Cartesian mesh (note that in the LS-STAG code the fluid cells adjacent to the
cylinder boundary are treated as cut-cells). The computational domain and boundary conditions are the same as the circular
cylinder computations of Section 4.2, with Xu ¼ 8:5D; Xd ¼ 20D and D=A ¼ 1=20. The mesh has 390� 170 rectangular cells
and its grid refinement near the cylinder body is based on the recommendations of Sohankar et al. [54], in particular
h=D ¼ 3:9� 10�3 near the body. The time step is Dt ¼ 5� 10�3D=U1. The computations have been performed on a Pentium
IV desktop with a 3 GHz processor and 1 GB of RAM, equipped with the WINDOWS XP operating system.

The LS-STAG code is written in FORTRAN 90/95 and compiled with doubled precision digits with the INTEL FORTRAN 9.1. A
relevant parameter of the computation is the residual tolerance for the linear systems, which is set at � ¼ 10�8. After the ini-
tial transients the linear systems of both the prediction and projection steps are solved in only one iteration.

The commercial code FLUENT is an unstructured finite-volume code which uses a collocated arrangement of the flow vari-
ables. The 6.0 version in 2D with single precision digits has been employed for the computation. We have used the recom-
mended settings for unsteady laminar flows: second-order segregated PISO time advancement, QUICK scheme for convective
discretization, and the PRESTO! method for pressure interpolation at cell faces. All the corresponding computational param-
eters are set at their default values, except the residual tolerances which are set at � ¼ 10�4 only. For this value, the iterative
algorithm takes only one iteration per time step to converge in average, but we could not get a converged solution for a tol-
erance as low as the one used in the LS-STAG computation.



Table 11
Results for the square cylinder flow at Re ¼ 100 and comparison with established results from the literature. The CPU time is measured for the time period
tD=U1 2 ½0;50�.

St CD Crms
L CPU time (min)

FLUENT, � ¼ 10�4 0:145	 2:5� 10�3 1.510 0.185 199

LS-STAG, � ¼ 10�6 0:150	 2:5� 10�3 1.497 0.196 48

Okajima [45] 0.141–0.145 – – –
Davis et al. [10] 0.154 1.55 – –
Sohankar et al. [54] 0.144 1.44 0.141 –
Saha et al. [51] 0.159 1.51 – –
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Salient results of the simulations are presented in Table 11. Both codes give accurate results which show good agreement
with the literature. On average, the FLUENT simulation required 1.19 CPU seconds per time step while the LS-STAG simula-
tion took only 0.28 CPU seconds, which makes the latter more than four times faster. Even greater savings can be expected
for 3D computations (note that in [38], the Cartesian code MGLET is 10 times faster than the curvilinear code DeFT for tur-
bulent channel flow computations).
5. Concluding remarks and implementation issues

In this paper, we have developed and analyzed a new IB/cut-cell method for incompressible viscous flows. For building
the LS-STAG discretization in 2D, the methodology we have followed can be roughly summarized as: enumerating the var-
ious types of cut-cells, and then discretizing the fluxes in each cut-cell such that the global conservation properties of the
Navier–Stokes equations are satisfied at the discrete level.

If we adopt the terminology used for computational methods for multiphase flows (see e.g. Tezduyar [57]), the LS-STAG
method can be viewed as an interface-capturing method for representing the immersed boundary, as opposed to most of the
IB methods that uses markers for the immersed boundary and thus belongs to the class of interface-tracking methods.
Although each class of methods has its own merits and shortcomings (e.g. for interface-capturing methods, the interface
is represented within the resolution of the finite-volume mesh, while for interface-tracking methods a second mesh is
needed for ‘‘tracking” the interface), the use of the level-function in the LS-STAG method provided an invaluable tool for han-
dling the immersed boundary and computing the geometry parameters of the cut-cells.

As for any interface-tracking or -capturing method, a satisfying implementation of the method in 3D (in terms of com-
putational efficiency, stability and accuracy) is an important issue. To fully evaluate the complexity that the method would
take in 3D, one has to understand first the actual algorithmic implantation of the LS-STAG method in 2D, and in particular the
construction of the discrete system for the u-momentum equation. Only the ‘‘cheap” discretization of the shear stresses will
be discussed, since our computations with the ‘‘cheap” method showed an accuracy comparable to the ‘‘complete”
discretization.

The discrete system for the u-momentum equation is typically built in a loop over the control volumes for ui;j, for
which we determine first the type of the east and west half cut-cells. Depending on their types, the geometry parameters
of the cut-cells (cell volume Vi;j, cell-face fraction ratios hu

i;j, velocity boundary data v ib, integration areas Dxib;w
i;j and Dxib;e

i;j )
can then be computed. In the framework of a Fortran code, these computations are efficiently performed inside a case
environment. We are then able to compute the various fluxes of the momentum equation: the easiest are the normal
stresses and the pressure gradient since a unique formula (Eqs. (50) and (30), respectively) is valid for all cut- and fluid
cells. The shear stresses are constructed with a boolean test on the cell-face ratios (see Eqs. (54) or (56) depending on the
result of the test). In contrast the convective fluxes of Appendix A have to be constructed inside the case environment,
since they are built independently for each type of half cut-cells such as any of their combination gives a skew-symmetric
discretization.

For building the case environment, we had to enumerate the admissible types of cut-cells by counting the values that
takes the level-set function /i;j at the corners of a 2D cell: 24 ¼ 16, from which we have to subtract 2 non-admissible types
that correspond to checkerboard oscillations of /i;j. Out of these 14 types of admissible cut-cells, we have sorted out six basic
types of cut-cells where distinct skew-symmetric discretizations of the convective fluxes had to be constructed: these six
basics types are the ones shown in Fig. 3. In addition, we remind that we have shown in Fig. 6 the three basic types where
distinct integration areas for the shear stress have been defined.

In 3D, the formulas for the mass matrix, pressure and normal stresses are direct extensions of the 2D case, and only the
discretization of the convective and shear stress fluxes has to be constructed for each type of cut-cells. We observe that there
is a maximum of 28 types of cut-cells, out of which 108 are admissibles. For the convective fluxes, we have sorted out 16
distinct cases of cut-cells (instead of 6 in 2D) where the skew-symmetric discretization has to be constructed (see
Fig. 19). For building the diffusive fluxes discretization, 7 distinct cases (instead of 3 in 2D) have to be examined. As a con-
clusion, the number of different cases of cut-cells to be considered is higher than in 2D, but not substantially higher, and the



Fig. 19. Basic types of cut-cells for the skew-symmetric discretization of the convective terms for ui;j;k . In the first row, we have grouped the cut-cells having
6 velocity unknowns (the maximum possible in 3D), then 5 unknowns, 4 unknowns, and finally 3 unknowns (the minimum).
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methodology we have followed in this paper for building the LS-STAG method remains valid in 3D. The results will be re-
ported in a future paper.
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Appendix A. Complements on the discretization of the convective terms

In this appendix, we give the discretization of the convective fluxes
R

Cu
i;j
ðv � nÞudS in the half control volumes of Fig. 3 such

that the skew-symmetry condition (27) is verified for any combinations of these half control volumes.
In the case of the northwest pentagonal cell (a) of Fig. 3, the boundary of the half control volume for ui;j is decomposed as

Cu;w
i;j [ Cs;e

i;j [ Cn;e
i;j [ Cib;e

i;j , and on each of these faces the skew-symmetric discretization is:
Z
Cu;w

i;j

ðv � nÞudS ¼ �
�ui�1;j þ �ui;j

2
uw; ðA:1aÞZ

Cs;e
i;j

ðv � nÞudS ¼ �1
2

�v i;j�1us; ðA:1bÞZ
Cn;e

i;j

ðv � nÞudS ¼ 1
2

�v i;jþ1un; ðA:1cÞZ
Cib;e

i;j

ðv � nÞudS ¼ 1
2

Uib
i;j
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with the following central interpolations:
uw ¼
ui�1;j þ ui;j

2
; us ¼

ui;j�1 þ ui;j

2
; un ¼

ui;j þ ui;jþ1

2
: ðA:2Þ
For the case of the west trapezoidal cell (b), the boundary is Cu;w
i;j [ Cs;e

i;j [ Cn;e
i;j , where the discretization on the last two faces is

given by (A.1b) and (A.1c), respectively, and:
Z
Cu;w

i;j

ðv � nÞudS ¼ 1
2

Uib
i;j � �ui;j

� � 1
2
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1
2

uib
i;j

� �
: ðA:3Þ
For the case of northeast pentagonal cell (c), the boundary is Cu;w
i;j [ Cs;e

i;j [ Cib;e
i;j , where the discretization on the first two faces

is given by (A.1a) and (A.1b), respectively, and:
Z
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: ðA:4Þ
For the case of north trapezoidal cell (d), the boundary is Cu;w
i;j [ Cs;e

i;j [ Cib;e
i;j , where the discretization on the first two faces is

given by (A.1a) and (A.1b), respectively, and:
Z
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2
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For the case of northwest triangular cell (e) and northwest salient corner (f), the boundary is Cu;w
i;j [ Cs;e

i;j [ Cib;e
i;j , where the

discretization on face Cs;e
i;j is given by (A.1b), and on the other two faces one has:
Z
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Appendix B. Complements on the shear stress force acting on the immersed boundary

In this appendix, we describe for each cut-cell of Fig. 6 the quadrature of the shear stress used for discretizing the hydro-
dynamic force (61) acting on the immersed boundary. The quadratures used on the cut-cells of Fig. 3 will be easily deduced
from the expressions given below.

The quadratures used for the drag (61a) and lift (61b) forces acting on the northeast pentagonal cell (a) of Fig. 6 are,
respectively:
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with @u=@yji;j given by the one-sided finite-difference formula (56) and analogously:
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The projected areas ½nxDS�ibi;j and ½nyDS�ibi;j are defined by (17), and for cut-cell (a) their expression reduces to:
½nxDS�ibi;j ¼ 1� hu
i;j

� �
Dyj; ½nxDS�ibi;j ¼ 1� hv

i;j

� �
Dxi:
For the north trapezoidal cell (b), it is more natural to use a trapezoidal quadrature:
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For the case of northwest triangular cell (c), one has:
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