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geometries. In IB methods, the computational grid is not aligned with the irregular bound-
ary, and of upmost importance for accuracy and stability is the discretization in cells which
are cut by the boundary, the so-called “cut-cells”. In this paper, we present a new IB
method, called the LS-STAG method, which is based on the MAC method for staggered
Cartesian grids and where the irregular boundary is sharply represented by its level-set
Complex geometries func.tion. This implicit representation of the immersed boundary. enables us to .calcu!ate
Immersed boundary methods efficiently the geometry parameters of the cut-cells. We have achieved a novel discretiza-
Cut-cell methods tion of the fluxes in the cut-cells by enforcing the strict conservation of total mass, momen-
Finite volume methods tum and kinetic energy at the discrete level. Our discretization in the cut-cells is consistent
with the MAC discretization used in Cartesian fluid cells, and has the ability to preserve the
five-point Cartesian structure of the stencil, resulting in a highly computationally efficient
method. The accuracy and robustness of our method is assessed on canonical flows at low
to moderate Reynolds number: Taylor-Couette flow, flows past a circular cylinder, includ-
ing the case where the cylinder has forced oscillatory rotations. Finally, we will extend the
LS-STAG method to the handling of moving immersed boundaries and present some results
for the transversely oscillating cylinder flow in a free-stream.

© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Much attention has recently been devoted to the extension of Cartesian grid flow solvers to complex geometries by im-
mersed boundary (IB) methods (see [28,39] for recent reviews). In these methods, the irregular boundary is not aligned with
the computational grid, and the treatment of the cut-cells, cells of irregular shape which are formed by the intersection of the
Cartesian cells by the immersed boundary, remains an important issue. Indeed, the discretization in these cut-cells should be
designed such that: (a) the global stability and accuracy of the original Cartesian method are not severely diminished and (b)
the high computational efficiency of the structured solver is preserved.

Two major classes of IB methods can be distinguished on the basis of their treatment of cut-cells. Classical IB methods
such as the momentum forcing method introduced by Mohd-Yusof and co-workers [41,14], use a finite-volume/difference
structured solver in Cartesian cells away from the irregular boundary, and discard the discretization of flow equations in
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the cut-cells. Instead, special interpolations are used for setting the value of the dependent variables in the latter cells. Thus,
strict conservation of quantities such as mass, momentum or kinetic energy is not observed near the irregular boundary. The
most severe manifestations of these shortcomings is the occurrence of non-divergence free velocities or unphysical oscilla-
tions of the pressure in the vicinity of the immersed boundary [43,30]. Numerous revisions of these interpolations are still
proposed for improving the accuracy and consistency of this class of IB methods [30,3,49,43].

A second class of IB methods (also called cut-cell methods or simply Cartesian grid methods, see [66,59,61,32,12,9,40]) aims
for actually discretizing the flow equations in cut-cells. The discretization in the cut-cells is usually performed by ad hoc
treatments which have more in common with the techniques used on curvilinear or unstructured body-conformal grids than
Cartesian techniques. Most notable is the cell merging technique used by Ye et al. [66] and Chung [9] that merges a cut-cell
with a neighboring Cartesian cell to form a new polygonal cell with more than four neighbors. The discretization stencil in
this newly formed cell loses thus the five-point structure (in 2D) of Cartesian methods. Such treatments of the cut-cells gen-
erate a non-negligible bookkeeping to discretize the flow equations and actually solve them, and it is difficult to evaluate the
impact of these treatments on the computational cost of the flow simulations.

The purpose of this article is to present a new IB method for incompressible viscous flows which takes the best aspects of
both classes of IB methods. This method, called the LS-STAG method, is based on the symmetry preserving finite-volume
method by Verstappen and Veldman [63], which has the ability to preserve on non-uniform staggered Cartesian grids the
conservation properties (for total mass, momentum and kinetic energy) of the original MAC method [24]. The LS-STAG meth-
od has the following distinctive features:

- A sharp representation of the immersed boundary is obtained by using a signed distance function (i.e. the level-set func-
tion [46,47]) for its implicit representation. Level-set methods were devised by Osher and Sethian [48] for the solution of
computational physics problems involving dynamic interfaces. So far for incompressible flows, the main application areas
of level-set methods have been the computation of two-phase flows [56]. In the present paper, the level-set function
enables us to easily compute all relevant geometry parameters of the computational cells, reducing thus the bookkeeping
associated to the handling of complex geometries.

- In contrast to classical IB methods, flow variables are actually computed in the cut-cells, and not interpolated. Further-
more, the LS-STAG method has the ability to discretize the fluxes in Cartesian and cut-cells in a consistent and unified fash-
ion: there is no need for deriving an ad hoc treatment for the cut-cells, which would be totally disconnected from the basic
MAC discretization used in the Cartesian cells.

- For building our discretization, we have required the strict conservation of global quantities such as total mass,
momentum and kinetic energy in the whole fluid domain, which are crucial properties for obtaining physically realistic
numerical solutions [1,42,63]. To achieve these preservation properties up to the cut-cells, we had to precisely take into
account the terms acting on the immersed boundary in the global conservation equations, at both continuous and discrete
levels. As a result, the convective, pressure and viscous fluxes have been unambiguously determined by these require-
ments, and the boundary conditions at the immersed boundary have been incorporated into these fluxes with a consistent
manner.

- From the algorithmic point of view, one of the main consequences is that the LS-STAG discretization preserves the five-
point structure of the original Cartesian method. This property allowed the use of an efficient black box multigrid solver
for structured grids [62], where no ad hoc modifications had to be undertaken for taking account of the immersed
boundary.

We also mention that a first attempt at constructing an energy-conserving IB method from the ideas of Verstappen
and Veldman can be found in [12]. In this paper however most of the computational aspects of the method has been skipped:
it appears that computation of the geometry parameters of the cut-cells, shape of the velocity control volumes, imposition
of the boundary conditions at the IB surface and computation of the diffusive terms are different than in the LS-STAG
method.

The paper is organized as follows. In Section 2, we recall the notations and salient properties of the staggered Cartesian
mesh, and then we present the LS-STAG mesh, its extension for the handling of immersed boundaries. Section 3 presents the
LS-STAG discretization in the case the immersed boundary is steady. First, we will recall the global conservation laws for
total mass, momentum and kinetic energy that will be used for deriving the LS-STAG method. Then, we will present the dis-
cretization of the continuity equation, which is valid in both cut-cells and Cartesian cells. As a matter of fact, we shall observe
that the consistency of the discrete continuity equation is a crucial point for building an energy and momentum preserving
method for incompressible flows. In the next subsections, we will impose kinetic energy conservation upon our numerical
scheme for completely characterizing the discrete pressure and convective fluxes in the cut-cells, and total momentum con-
servation for the determination of the viscous fluxes. We mention that the discretization of the viscous fluxes has been by far
the most intricate part of the LS-STAG discretization in the cut-cells. Section 4 is devoted to numerical tests on canonical
flows at low to moderate Reynolds number for assessing the accuracy and robustness of the LS-STAG method. Comparisons
with an unstructured solver in terms of CPU time and accuracy will be given. Finally, we will present some results for one of
the most appealing features of IB methods: the ability to compute flows with immersed moving boundaries on fixed carte-
sian grids, without the need for domain remeshing at each time step.
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2. Preliminaries and description of the LS-STAG mesh
Let Q be a rectangular computational domain and I its surface. The governing equations are the incompressible Navier-

Stokes equations in integral form. In the following, we will consider the finite-volume discretization of the continuity
equation:

/r v-ndS=0, (1)
where » = (u, v) is the velocity, and the momentum equations in the x and y directions, respectively:

;t/udVJr/(v nud5+/pex ndS — /vVu ndS=0, (2a)

é:lt / vdV+/(v n)vdS + /pey ndS — /vVv ndS =0, (2b)

where p is the pressure and v is the kinematic viscosity.
2.1. The staggered MAC mesh for Cartesian geometries

The Cartesian method on which our IB method is based is the second-order finite-volume discretization of Verstappen
and Veldman [63], which has the ability to preserve on non-uniform Cartesian cells the conservation properties (for total
mass, momentum and kinetic energy) of the original MAC method on a uniform staggered grid [24]. The staggered arrange-
ment of the unknowns in a Cartesian cell is represented in Fig. 1. The rectangular computational  is partitioned into Carte-
sian cells €;; =1, %[ x]Y;_1, ¥ils whose volume is V;; = AxiAy; and center is xC = (xf, yc) The surface I';; of cell ©;; is
subdivided into four elementary plane faces as:

[yj=TSUlturturs, (3)

by using the usual compass notations (e.g. [17]). Cell ©;; is used as a control volume for discretizing the continuity equation
(1), whereas the staggered cell Q; =x{, x{ ;[x]y;_;,¥;[ is the control volume for the x-momentum equation (2a). For subdi-
viding the surface I'}; of this control volume, we first decompose the north and south faces of @;; as I'f; = I';" U T and

Ij; = I7" uTi;, respectively, and then write:
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Fig. 1. Staggered arrangement of the variables for (a) a Cartesian cell ;;, and representation of control volumes for (b) u;; and (c) v;;. The control volumes
QFJ € QijU Qi and Q) € Qij U ;). are to be completed with their complementary part in Q;,1; and Q;;,1, respectively.
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ry =t or o (rp oo (reorey,). (4)

i+1j i+1j

v

An analogous decomposition holds for the faces of the control volume @/}, which is used for discretizing the y-momentum
equation (2b). These notations will be useful for describing the LS-STAG mesh.

2.2. The LS-STAG mesh for immersed geometries

We consider now an irregular solid domain @ which is embedded in the computational domain &, such that Qf = @\ Q"
represents the fluid domain where the Navier-Stokes equations are to be discretized. To keep track of the irregular boundary
I'® we employ a signed distance function ¢(x) (i.e. the level-set function [46,47]) such that $(x) is negative in the fluid region
Qf - ¢(x) is positive in the solid region @Q®, and such that the boundary I'® corresponds to the zero level-set of this function,
ie.:

—4, xeQf
pX) =0, «xel (5)
+4, xe QP

where 4 represents the distance between x and the nearest point on the immersed boundary.

This leads to the modification of the MAC mesh that is described in Fig. 2, and that will be subsequently referred to as the
LS-STAG mesh. In each cut-cell Q;;, the immersed boundary is represented by a line segment whose extremities are defined by
linear interpolation of the variable ¢;;, which takes the value of the level-set function ¢(x;, ;) at the upper right corner of the
cell. We use notations similar to the Cartesian method for the faces of the cut-cells. For example in Fig. 2, the faces of the
trapezoidal cut-cell ©;; are denoted:

Iij=T{uT§;uls;ury, (6)
where I"i‘j’ represents the solid north face of the cut-cell. As it will be justified later, the velocity unknowns are exactly located
in the middle of the fluid part of the faces. In Fig. 2, the discrete pressure p;; is located at the intersection of the velocity loca-
tions. This location is used for visualization purpose only, and will never be used in the discretization. In effect, we will find
out in Section 3.3 that the discrete pressure is piecewise constant in each cut-cell, as in some mixed finite element methods
(e.g. [50]), and thus does not need to be precisely located in the cut-cells.

As observed in Fig. 2, there are three basic types of cut-cells: trapezoidal cells such as Q;j or Q;,, triangular cells (i.e.
©Qi_1j+1) and pentagonal cells (i.e. Q;_4;). The discretization of the momentum equations will be performed in the staggered

control volumes ¢} and €/}, whose shape has to be adapted to each type of cut-cells. For example in Fig. 2, the faces of

the control volume ¢} read:

ri=rirorieu(rrory,) o (ricurty), (7)

i+1j i+1,j

where the solid faces F:‘;'e U F:E}NJ are formed with two halves of the solid face of the neighboring trapezoidal cut-cells

e crfand Py, c Iy, ;. For the other type of cut-cells, these control volumes will be constructed from the six halves
of generic control volumes that we represent in Fig. 3. In this figure, the irregular shape of the staggered control volumes

is given for representation purpose only, and their geometric parameters, such as their actual volume or shape of the vertical
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Fig. 2. Staggered arrangement of the variables near the trapezoidal cut-cell Q;; on the LS-STAG mesh.
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(a) Northwest Pentagonal Cell (b) West Trapezoidal Cell
* /
f W4 4 g, j
L :
, I
e
Ui—1,j 1‘ f
I Vi j—1 I Ha—1
(c) Northeast Pentagonal Cell (d) North Trapezoidal Cell

Uil oy @ ® .. . / U, g
| Uj j & ‘ —

1_ — Uj—1,j f
ULJ_]- I 'Uiaj_l
(e) Northwest Triangle (f) Northwest Salient Corner

' A,

|
[ Wi j
/l/ I

I Vi j—1 Yi,j—1

Fig. 3. Basic types of half control volume for the velocity unknown u;; inside the cut-cell Q;;. The diamonds (<) denote the locations of the discretization of
the velocity boundary conditions. Note that the re-entrant corner of a Cartesian mesh is a particular case of pentagonal cell (c) when ¢;; = 0, and that Case
(f) (which corresponds to ¢; ;1 = ¢;_1; = ¢;; = 0and ¢;;_; < 0) corresponds to the particular case of a salient corner. Only the definition of the cell volume
distinguishes the latter cell from the liming case of triangle (e) defined by ¢; 1; ; = ¢;; =0, ¢;_1; >0 and ¢;; ; <O.

faces I';" and I''® are never used by the LS-STAG discretization: instead, we will employ arguments based on the strict con-
servation of global quantities of the flow, such as conservation of total mass and kinetic energy for discretizing the momen-
tum equations in the cut-cells. For complexness, we present in Fig. 4 all the possible combinations of the half control
volumes of Fig. 3 for forming the control volume ij. It is important to mention that the LS-STAG discretization does not need
to be individually adapted to each of the cases depicted in this figure. Instead, the discretization will be built for the half
control volumes of Fig. 3, such that any combination yields a consistent discretization of the momentum equations with
the aforementioned global conservation properties.

However, the LS-STAG method relies on a sharp representation of the geometry of the cut-cells ©;;. In this respect, the
level-set function will prove to be a very efficient tool for calculating the geometric parameters of a cut-cell, such as its vol-
ume or the projected areas of its faces. A quantity that will be extensively used for calculating these parameters is the fluid
portion of the faces of cell ©;;. For example in Fig. 2, by using one-dimensional linear interpolation of ¢(x;,y) in [y;_;,y;], we
calculate the length y;'; — ¥j_1 of the portion of face I'}; that belongs to the fluid domain as:
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(a) (b)

Fig. 4. All possible combinations of the half control volumes of Fig. 3 for forming the control volume j;. Case (h) has to be excluded from the actual flow
computations since it would give rise to a non-unique definition of the differential quotient 9v/0x|; ;j» which is stored at the upper right corner of cut-cell Q;;.
This case corresponds to an oscillation of the level-set (¢; 1; <0, ¢;; >0 and ¢;,,; < 0). It can be easily filtered prior to the flow computation by setting
¢i; =3 (dbi_1j + ¢iy15)- This particular case happens very scarcely in the meshes we actually use, since it would correspond to a mesh that is too coarse when
compared to the local curvature of the immersed boundary (see [47, Section 1.4]).

Yo -y =067y, with 6], = _ P since ¢(xi,y§‘}) =0.
bij1 — iy
The scalar quantities 0;; and 6;;, which take values in [0, 1], will subsequently be called the cell-face fraction ratios. They rep-
resent the fluid portion of the east and north faces I'f; and I'{}, respectively. They will be extensively used for detecting if the
discrete velocities u;; and »;; belong to the fluid domain, and for discretizing the surface and volume integrals in the Navier—
Stokes equations (1) and (2). The cell-face fraction ratios also appear in the analytic expression of the volume V;; of cut-cell
©Q;j, which is given in Table 1 for the three basic types of cut-cells. We note that V;; correspond to the VOF function which is
used for the simulation of multiphasic flows, e.g. [53].
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Table 1

Analytical formula of the volume for the basic cut-cells of Fig. 3. The volumes of the other cut-cells can be easily deduced from the ones displayed.
Type of cut-cell Volume
(c) Northeast pentagonal cell Vij = [0,"1 +3 (] 4k o;fj) (] = 0,.'3.)]Ax,-ij
(d) North trapezoidal cell vij=1 (9;‘1 + o 1J)Axiij
(e) Northwest triangle Vij= %Uﬁj()fj, 1AX;Ay;
(f) Northwest salient corner Vij = AxiAy;

3. The LS-STAG discretization for stationary immersed geometries
3.1. Global conservation laws for viscous incompressible flows

As early as the 1950s, it was recognized that for physically realistic integration of dynamical systems such as the fluid
dynamics equations, linear and quadratic invariants of the continuous equations should be conserved by the numerical
scheme [1,34]. For the incompressible Navier-Stokes equations (1) and (2), these flow invariants are the total mass in the
whole fluid domain [ V - #dV, total momentum P(t) = [, #dV and, in the case of vanishing viscosity, total kinetic energy
E(t)=1 [y |vfdV.

Conservation equation for total mass and momentum are obtained by a straightforward integration of the Navier-Stokes
equations in the whole fluid domain Q'. After integrating by parts of the volume integrals, one gets:

/ v-ndS =0, (8a)
Fib
dp
T ribw~ndS—F, (8b)

where F = (Fy, Fy) represents the hydrodynamic force acting on the immersed boundary, such that:

ou ou
F, :/Fm {p— va e, -ndS— . v@ey‘nds, (9a)

ov ' ov
Fy_—/Fbvaex-ndSJr/rlb {pfv@

At the discrete level, total mass is trivially conserved on the MAC mesh because of the staggering of the velocities, and so it
will be on the LS-STAG mesh. On non-staggered grids however, we mention that the discrete equivalent of (8a) is not ver-
ified, and the mass dissipation of non-staggered methods remains an issue [55,64]. At the discrete level, total momentum is
conserved by any numerical method if the momentum equation is written in its conservative form and if the property of
local conservation of the numerical fluxes at cell faces holds. If the issue of the implementation of boundary conditions is
to be included in the analysis, we may consider that total momentum is conserved if the RHS of the discrete counterpart
of (8b) is consistent with the computation of the hydrodynamic force that acts on the solid boundary. This issue is mostly
pertinent for non-body conforming methods such as IB methods.

For incompressible flows, the conservation of kinetic energy is a consequence of the Navier-Stokes equations, and the
equation for E(t) is obtained by multiplying the momentum equation with » and integrating in the whole fluid domain.
After integration by parts of the volume integrals, this conservation equation reads:

dE, v
W:/d K'; +p>V-vv|Vv|2

Thanks to the continuity equation, the only term remaining in the volume integral involves the viscous stresses, and ex-
presses the loss of energy by viscous dissipation. The non-vanishing terms in the surface integrals show that the pressure
and convective terms only influence the kinetic energy budget by their action at the immersed boundary. On uniform Carte-
sian grids, it is well known the original MAC method with central differencing of the convective term is energy preserving, i.e.
the discrete kinetic energy budget of the scheme mimics (10). However, for more general type of meshes the construction of
energy preserving methods is not a trivial task. In [42], Morinishi et al. have extended this property to higher-order finite-
difference discretizations on uniform Cartesian grids. More recently, Verstappen and Veldman [63] constructed an energy
preserving finite-volume method on non-uniform grids by observing that the discrete kinetic budget mimics (10) if the con-
vective and viscous terms are discretized with skew-symmetric and symmetric positive-definite operators, respectively. In
the next sections, we will use similar arguments for building an energy (and momentum) preserving discretization on the LS-
STAG mesh. We mention that for constructing this discretization up to the cut-cells, we had to precisely take into account the
boundary integrals in (8b), (9) and (10). To our knowledge, these boundary terms have always been neglected in previous
studies, with the exception of the recent work by Jameson [29].

e, -nds. (9b)

v’

dV—/ ( +vav>v-nd5. (10)
i\ 2
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In the following, we will focus on semi-discrete conservation properties only, i.e. we will ignore issues related to the vio-
lation of these properties by the time-stepping scheme, as the other studies cited in this paragraph do. However, we mention
that quadratic invariants such as the total kinetic energy can be totally conserved in an unsteady computation if implicit
Runge-Kutta (IRK) schemes at Gaussian points are used, of which the well known midpoint rule is a particular case [2]. Nev-
ertheless, several issues arise when IRK schemes are applied to the incompressible Navier-Stokes equations: the implicit
nature of the convective discretization, the loss of accuracy which is observed on the computed pressure, and the fact that
they are not stiffly accurate which hampers their stability properties. Thus, the design of a practical and energy conservative
time-stepping method for incompressible viscous flows is left for future work.

3.2. Discretization of the continuity equation

As in the Cartesian method of Ref. [63], the starting point of the LS-STAG discretization concerns the mass conservation
law (1) in cell ©;;. For any fluid cell (cut-cell or Cartesian), we denote its faces as I';j = I'jj U I'{; UT5;UT7; U T}, and decom-
pose the continuity equation as the net mass flux through each of these faces:

r'n”z—ﬂ,—,l_j—i-ﬁ,»_j—77iJ,1+17iJ+U§5-:0. (11)
In this equation, US = [, ™ - ni® dS denotes the mass flux through the solid part of the cell boundary, where »" is the veloc-
' o :

ity datum prescribed at the IB boundary. This boundary mass flux may be non-zero for non-homogeneous boundary condi-
e

tions only. The mass flow through the fluid part of the faces is denoted with a bar: for example, the flow through face I';; of
Fig. 2 is:

ib

¥
ﬂ,«Jz/ v-ede:/ u(x;,y)dy. (12)

Iy Yj-1
In order to easily discretize this integral, we first locate the discrete unknown u;; in the middle of the fluid part of the face as:
1

ujj = U<Xi,yj'_1 +§H?jij>‘ (13)
Then, by using midpoint quadrature, we obtain:

ﬂi‘j = Hﬁjijllj‘j, (14)
and following analogous discretizations for the other faces, the discrete continuity equation reads:

m = Ay] <0§fju,-J- — 0?7””1;1__)') + AX; <011)J Vij — 01?}71 Ui_jq) + U;tj) =0. (15)
We now turn to the discretization of the boundary term as:

. . b b

UP = ub[ncAS]i; + v5[nyAS]i;, (16)
where [nXAS]ﬂ} and [nyASE.? are the projected areas of the solid face of the cut-cell in the horizontal and vertical directions,
respectively, and velocity o} = (u}'j v;'j) represents an approximation of the velocity on the solid boundary I’ ;5’ of the
cut-cell. This last term is calculated with the trapezoidal rule, for example in Fig. 2:

ol =0 (o) + 59 (st

where the velocity boundary condition ' (x,y) is discretized at the extremities of line segment F:'J’ in the cut-cell. The pro-
jected areas are readily calculated from the cell-face fraction ratios as:

[mAS] = (01— 05 Ay, ImAS] = (05, - 05) Ax. (17)

We mention that this discretization of the continuity equation is valid for any type of cut-cells, and in the particular case of a
Cartesian fluid cell (such as the cell-face fraction ratios are equal to 0 or 1 only), Eq. (15) reduces to the discrete continuity
equation of the original MAC method.

In the following, it will be useful to write the discrete continuity equation in its matrix form:

DU+ TP =0, (18)
where each line (i,j) of this system corresponds to Eq. (15) written in cell €;;, and the vectors U and U™ contains the velocity

unknowns (u;j, ;;) and the discretization of the boundary terms, respectively.

3.2.1. Discrete conservation of total mass
Now we are able to show that this discretization of the continuity equation conserves total mass in the most general case
of the LS-STAG method: i.e. when the IB boundary has the time-dependent motion of a rigid body:
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v (x, 1) = V(1) + QP(t) x O, (19)

where 0 is a reference point of the immersed solid ©°, vectors V() and Q®(t) are given translation and angular velocities.
We also have to make two assumptions on the computational domain. The first one expresses that the immersed boundary
I'™ is a closed surface, i.e.:

/ mbds= Y / mbds =0, (20a)
Jri Cut-cellsQ;; F;‘;
and the second one states that the fluid domain is not dilatable:
d / ) )
— dv = / v (x, t)- n®dS = 0. (20Db)
de of Cut-c;sﬂi_j r:b) Y

In these equations the integrand is linear in space since ™ (x, t) is given by (19), so midpoint and trapezoidal rules give exact
quadrature:

Y [mAs] =0, (21a)

Cut-cells®;;

Qib (t)

Cut-cells®;;

- [nAS) =0, (21b)

ib ib
y Oa;; + Ob; i
2
where a5 and b;? denote the extremities of line segment Fi-b? in a cut-cell.
The discrete counterpart of the conservation of total mass (8a) amounts to summing the discrete continuity equation (11)
in all fluid cells. In matrix form it reads:

1"pU + 17T = 0, (22)

where 1 is the constant vector. For proving this identity, we first simplify its left-hand-side by using the local conservativity
of the mass fluxes at fluid faces, such that only the fluxes U}g at the IB boundary remains:

1"DU + 170" = 17U™.
Then, after integrating the velocity datum (19) with the trapezoidal rule one finally obtains:

_ , ) ) 0a® + op® .
1"DU+1TT° = 37 VP(t) - [nAS]) + QP(1) x — [mAS] =0,

Cut-cells®;;

thanks to identities (21a) and (21b). Thus, total mass is trivially conserved by the LS-STAG method. In the following, we will
see that the other global conservation properties of Section 3.1 will not be as easily satisfied. Instead, we will have to impose
some constraints on the discretization of the momentum equation such that total momentum and kinetic energy be dis-
cretely conserved.

3.3. Momentum equation I: energy preserving discretization

Now, we turn to the discretization of the momentum equation (2), whose semi-discrete matrix representation reads:

%(MU) +C[UJU + GP — vKU 4 S —vs®™¥ = 0, (23)
where the diagonal mass matrix M is built from the volume of the fluid cells, matrix C[U] represents the discretization of the
convective fluxes, G is the discrete pressure gradient, K represents the diffusive term, $°¢ and S are source terms arising
from the boundary conditions of the convective and viscous terms, respectively. These different terms will now be con-
structed such that total momentum and kinetic energy are discretely conserved.

We consider first the conservation of the kinetic energy E(t) =1 [, |w|* dV, that we discretize with the trapezoidal rule in
each fluid cell @;;:

1 1
E.(t) = Elt) = 5 U™ MU + 5 Ut MPy®, (24)
where M is the diagonal mass matrix that appears in the discrete momentum equation (23), and U™T M U™ is the contri-

bution of the boundary conditions, which are assumed to be steady. For each line (i,j) of the discrete system (23), the trap-
ezoidal rule gives the value of the diagonal coefficient of the mass matrix in the horizontal and vertical directions:

o1 1 1 1
M (i.)) = jvzlj + jvi+1.j~, (M]p(0)) = jVu +§Vu+17 (25)



1052 Y. Cheny, O. Botella/Journal of Computational Physics 229 (2010) 1043-1076

where the subscript P refers to the main diagonal elements in the usual compass notation (e.g. [17]). These expressions show
that, in the cut-cells at least, the mass matrix for u;; and v;; is not constructed from the actual areas of QE‘J and Q,”J

The conservation equation for Eﬁ(t) is obtained after time-differentiation of (24), then by using the discrete momentum
equation (23), we finally obtain:

dE; _1ClO" +C0),  prgry VKT +K)
—<=-U———-——-U-PGgU-U ——+-—
dt 2 g 2
In order to obtain an expression similar to (10), the viscous term —U"(KT + K)U should mimic the viscous dissipation of the
kinetic energy budget, and thus should always be strictly negative. This feature is obtained as soon as the matrix KT + K is
positive definite. For a finite-volume method, this is obtained as soon as the discrete diffusive flux is stable and consistent
[13]. Note that the symmetry of K is not required. If, in addition, we impose that the discretization of the convective terms

leads to a skew-symmetric matrix:

U-— UT(Sib,C _ Vsib.v). (26)

cU] = —c[uy, (27)
and that, as in the finite element method, the pressure gradient be dual to the divergence operator (see Eq. (18)):
G=-D', (28)
we finally observe that the boundary terms only affects the kinetic energy budget when the viscosity vanishes:
h .
% =-P'U" - U's". (29)

3.3.1. Discretization of the pressure gradient

In the above equation, the term P'U™ represents the discretization of the pressure term Jr» pv-ndS in Eq. (10), and con-
dition (28) allows us to completely determine the discrete pressure gradient in control volumes Qf‘J and Q;; from the discrete
divergence operator (15):

/r" pey - ndS = [gXP]i.j = H?JAYj(piH.j - Dij)s (30a)
i

/r" pey - ndS = ['P];; = 0,Axi(Dij 1 — Dij)- (30Db)
i

These formulae are valid for any type of fluid cells, and in the particular case of Cartesian fluid cells (such that the cell-face
fraction ratios are equal to 1), one recovers the finite-difference gradient of the MAC method:
X Di1j — Dij X1 /i
[g P]i.j - %AXH-I +%AX,’ [M }P(17])7
where [M"],(1,j) = (3 Axi;1 + 3 Ax;) Ay; for the Cartesian control volume ;.

In the cut-cells however, it is not possible to interpret formulas (30) as finite-difference quotients for p;; located at the
centroids of the cut-cells. Instead, the LS-STAG discretization has much in common with the P1 nonconforming/PO finite ele-
ment method, where the pressure is approximated with a piecewise constant polynomial with degrees of freedom at the
elements centroid [50]. As a consequence, p;; is a valid approximation of the pressure anywhere inside cut-cell Q;;, even
on its solid face. Note that an equivalence of this assumption in a Cartesian mesh is that the pressure gradient is zero at solid
boundaries. In the next Section, we shall observe that the normal viscous stresses are discretized similarly.

3.3.2. Skew-symmetric discretization of the convective fluxes

For the x-momentum equation (2a), the skew-symmetry property (27) of C[U] imposes upon the discretization of the con-
vective term, that we write in a Cartesian control volume away from the immersed boundary as the following five-point
scheme:

/ru (- m)udS = C[Uly (i,§)ti15 + C[UJg(1,)uisaj + CIULp(E.J)uj + CIUJs (i utijr + ClUN (1) Uigi1, 31

ij

must verify the following conditions:

C[Ulp(i,j) = 0, (32a)
ClUg(1,j) = —C[Uly (i + 1.j), (32b)
ClUN(1.j) = —C[U)s(i,j + 1). (32¢)

The central discretization of the MAC method trivially verifies these conditions on uniform meshes. Other popular dis-
cretization, such as discretizations of upwind type, are known to violate this condition, resulting in adding artificial vis-
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cosity to the scheme. Recently, Verstappen and Veldman [63] have proposed a skew-symmetric discretization, also
coined symmetry preserving, which enforces conditions (32c) on non-uniform Cartesian meshes. This discretization will
be the building block of the LS-STAG discretization of the convective term in the cut-cells. For the Cartesian control vol-
ume QI“J of Fig. 1, the skew-symmetric discretization consists in writing the convective term as the net flux through its

four elementary faces:
/ (v~n)ud5:—/ (v~ex)udy+/ (v-e)udy — (v~ey)udx+/ (v-ey)udx, (33)
I—w;}] I-U.W ru.e FS eurs W I—vl‘l EUI-l‘l LW

ij ij i1, i+1j
Each of these terms are discretized with the help of the discrete mass fluxes (14), for example for the east face:

/ (v ex)udy—%ue, (34)
1"1:[.9

where e is a characteristic value of u on '}, which has to be obtained by interpolation of the discrete velocity unknowns. As
observed by Verstappen and Veldman, the only possible way to verify the skew-symmetric conditions (32c) is to use central
interpolation with equal weighting:

_ Ui + Uiy
e="5 (35)
Analogous interpolations are obtained on the other faces, for example on the south face:
/ (v-eudx = oty 4 Vit (36)
rSEUrlSV;J 2 2
with us = (u;;_1 + u;;)/2. Now, by using the property of local conservativity of the fluxes through fluid faces:
/ (v~ex)udy:/ (v-eudy, / (v-ey)udx:/ (v-ey)udx, (37)
e s rie i
one gets, after identification with (31), the following coefficients of the discretization:
CUlp(0.) = it + i1, (382)
— 1._ 1_ — .. 1_ 1
ClUlw(i,J) = — gty T g U ClUL(i.)) = Uit 4”1+11 (38b)
—_ 1_ 1._ 1 1
C[U}s(lv.’) = *Z vi,j—l - Z Ui+1,i—17 [ ] ( ) 7/1] += 1 yHl] (38C)

which verifies the antisymmetry conditions (32c) when the discrete continuity equation is verified in ©;; and ;4. Any type
of interpolation other than (35), for example an upwind discretization, would violate theses conditions.

In the cut-cells, the skew-symmetric discretization given by (31) and (38c) must be modified in order to take
into account the boundary conditions on the immersed boundary. This discretization would prove to be more com-
plicated to build than for the pressure gradient, because we could not obtain a unique formula which would be
valid for any type of cut-cells: instead, the discretization should be constructed in each of the half generic control
volumes of Fig. 3 such as the skew-symmetry condition (27) be verified for any combinations of these half control
volumes.

Let us consider the case of the control volume Qj; of Fig. 2, whose north solid boundary I'’* U I'"}"; is built from two

i+1j
halves of trapezoidal cut-cells. For this control volume, the discretization of the convective term must take the form:

/r (v-myudS = C[Uly, (i, j)ui_1; + C[UJg (i) tis1; + C[UNp (i, )uij + C[U]5 (i, j)uj- 1+ Se (39)

ij

1J7

where C[U],(i,j) is discarded since the velocity unknown u;;,; does not exist in the fluid domain. The skew-symmetry con-
dition (27) reads for this control volume:

ClUp(i,j) =0,  CUJg(i,j) = ~ClUw (i + 1.j). (40)

The discretization that verifies these conditions is obtained by decomposing the boundary of the control volume as in Eq. (7),
and writing the convective term as the net flux through each of these faces:

/ (v~n)ud5:—/ (v<ex)udy+/ (v-e)udy — (v-ey)udx+/ (v-n®)uds. (41)
F;J,j uw e Fs eursw I—vlb eurlb A

ij ij i+1j i+1j

The fluxes through each of the fluid faces are given by Egs. (34), (36) and (37), whereas the fluxes through each half of solid

face I'’>* and I’} are discretized separately as:
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: . Ut 1 1 )
b ~ b
/ri.b:e (v-n}_j)uds o~ 2” <jﬁ+§u(xi,y}d»)>7 (42a)
ij —_—
. ub .1 1 )
ib ~ 1, ib
/rib-w (v-nHu)udS: 5 J (ju,»_j +iu<xi,yu>>. (42b)

i1j

In these expressions, the terms underlined once contribute to the diagonal coefficient C[U],(i,j)u;j, in order to recover the
expres_sion of the discrete continuity in Q;; and Q;,,;, whereas the terms which are twice underlined contribute to the source
term S}?‘C. As a result, the discretization of the convective term in this control volume is also given by (38c), with the excep-
tion that:

TT P ib,c 1 U:B U:EU ib
ClUGLS) =0, S =5 ( 52+ =51 Ju(x.yE)- (43)

The antisymmetry conditions (40) is thus verified, and we may consider that the source term Sig‘cui ;j that arises in the kinetic
energy budget (29) corresponds to a discrete approximation of the term [« |v|*v - n/2dS written on the solid boundary
rHeu Py of the control volume.

For the other types of half control volumes depicted in Fig. 3, the skew-symmetric discretization is given in Appendix A.
This discretization is built such that the skew-symmetry condition (27) is verified for any combinations of these half control

volumes.

3.4. Momentum equation II: Discretization of the viscous fluxes based on the conservation of total momentum

For the x-momentum equation (2a), the viscous terms written in control volume Q:‘} reads:

/ Vu-ndS = @ex-nd5+ ou
Jr Jry ox Jr, ay

e, -nds. (44)
We aim to discretizing these terms in the cut-cells such that the simplicity of the five-point structure of the MAC
method be preserved. We have found that the discretization of the viscous fluxes is much more intricate than for the
convective fluxes. As a matter of fact, we will need to impose the conservation of total momentum (8b) at the discrete
level for completely characterizing theses terms: this is equivalent to stating that the discretization of the viscous
fluxes in the cut-cell be consistent with the discretization of the hydrodynamic forces (9) acting on the immersed
boundary.

First and foremost, we had to make a distinction between the discretization of the normal stress fluxes, e.g.
Jr« Ou/Oxe, - ndS and the shear stress fluxes, e.g. [, du/dye, -ndS. This distinction is also observed in Cartesian fluid cells
sifice, due to the staggering of the velocity unknowhs on the MAC mesh, the normal stresses:

ou Ujj — Ui ov Vij — Vij1

2 = , —| =2 45

0X|; i AX; ay|; | Ay; (45)
are naturally located at the center of cell Q;;, while the shear stresses:

ul _ Uijig — Ui oV Vinj = Vi (46)

Why 3 438y Xl M A%

are located at its upper right corner (see Fig. 5).
On the LS-STAG mesh, it is very natural to locate the shear stresses at the vertices of the cut-cells as shown on Fig. 6. Note
that for the case of pentagonal cells, ou/dy|;; and dv/dx|;; are computed at distinct vertices.

Vi 4
bd ou dv
Hl t )y 7
| dy i Oz li,j
Ui—1,5 - Ug,5
el [E——
ou v
[ ] 1,1 T B g
1 Pid» by ii Oyl j

Vij—1

Fig. 5. Location of the pressure and viscous stresses in Cartesian cell €;;.
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(a) Northeast Pentagonal Cell

dv
Vij4 Oz ij
~
~
b
Ui—1,5 | dy i
—_—
1 Ut
I Vi -1
(b) North Trapezoidal Cell (c¢) Northwest Triangular Cell
ou v
du v Ay .i.‘jT dxlij
/ dyli; dxlij '
—
I S 8 | i, j
—n Li g i
wi—1. 4 f 1
Ivi‘_j—l I"’fi-.i~l

Fig. 6. Location of the shear stresses in the three generic cut-cells Q;;. The location on the other cut-cells of Fig. 3 can be easily deduced from this figure.

For the normal stresses in contrast, we consider that these terms have a physical origin (diagonal part of the Cauchy stress
tensor) and a mathematical regularity similar to the pressure. In consequence, their treatment should be consistent with the
pressure discretization discussed in the previous section: we assume that the normal stresses 9u/dx|;; and dv/dy|;; take con-
stant values in cut-cell Q;;, and do not need to be precisely located inside the cut-cell.

As a conclusion to this paragraph, we mention that the LS-STAG discretization of the viscous stresses has much in com-
mon with the finite element method for viscoelastic flows of Saramito [52], where the normal stresses are discretized with
piecewise constant polynomials with a degree of freedom at the elements centroid, while the shear stresses are discretized
with a linear continuous polynomial with degrees of freedom at the elements vertices.

3.4.1. Discretization of the normal stress fluxes
We now turn to the discretization of the normal stress flux [,. du/oxe, - ndS in the cut-cells. For this term, a geometric-
based formula would consist in writing this term as the net flux through the east I} and west I'}" faces, and then discretize
each of these terms with a differential quotient, for example in Fig. 6(a) and (b):
ou

ou o Aptw Uij — Ui
r;‘jw % [ ndS ~ Ayl,l Axi s (47)

where the area Ay{;" is yet to be defined. All our efforts in this direction gave disappointing results in terms of numerical
accuracy. The reason is that the LS-STAG mesh is not admissible in the sense of Eymard et al. [13] for the normal stresses
in the cut-cells: the line joining the location of u; 1; and u;; is not orthogonal to the face F}szw in the trapezoidal cell of
Fig. 6(b). This feature is also observed for pentagonal cut-cells (see Fig. 6(a)), and has the consequence to render approxima-
tion (47) non-consistent and thus to yield large numerical errors.

In order to improve the consistency of this term, we use the fact that the discrete normal stresses should be consistent
with the discrete pressure, as argued above, and thus the normal stress flux shall be discretized with an expression similar to
the pressure gradient (30a):

). (48)
ij

The discretization has to be completed with a differential quotient for du/dx|;;. This quotient is constructed by requiring that
Green’s theorem:

" fou  ov "
ou v dV=/ v-nds, 49
A;‘j <ax ay) F;J ( )

ou
r;_{j 3X

du
(924

ou

ex-ndSNH;‘J.ij( ~ o

i+1j
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be valid at the discrete level in a cut-cell, since it is trivially verified by the MAC method in a Cartesian cell. After a straight-
forward discretization of the integrals and comparison with the continuity equation (15), one gets:

Oy = Ot + (01— 0 Yulb

ou
, 50a
8x Vij/Ay; (50a)
and an analogous expression holds for 9v/dy|;;:
ov 9 Uu 91‘]-71 Vij1+ <9,Z»71 — 96) U:l; (50]3)
8y i ViJ/AXi ’

These expressions are valid for any type of cut-cells, with the boundary conditions naturally imbedded. These formulae re-
duce to the standard finite-difference quotients for a Cartesian fluid cell (see e.g. (45)).

3.4.2. A first discretization of the shear stress fluxes

In contrast, the discretization of the shear stress flux ;.. du/dye, -ndS may seem simpler because the LS-STAG mesh is
admissible for this term (see Fig. 2). The shear stress term ¢an thus be written as the net flux through the north and south
faces, for example far from the immersed boundary:

ou ou ou
—e,-ndS = dx — / dx. 51
/r“ ay” rpeoryy ay ryeorsy ay S

i1 i+1j

Application of the midpoint rule gives for the north face for example:

n.e ou
/Fne an @dx <AX +Ax‘+”>8y

where for the purpose of local conservation of the fluxes, the areas Ax" ¢ and Ax?jlvj represent only the fluid part of the faces,
ie.:

(52)

1 W 1
Ax! _zevAx,, Ax{‘m—ZGHUAx,H (53)

The quotient ou/dy/;;, located at the upper right corner of cell &;; (see Fig. 5), is computed by differentiating the interpolation
polynomial of u(x;,-) in the vertical direction:

ou Ujj — Uij
qul _ (54)
ay ij %O?J'HA.VHI +2 ley]

This finite-difference quotient is much similar to the usual one (Eq. (46)). Formulae (52)-(54) are valid if u;;,4 is present in

the fluid domain, i.e. if 6f;,, > O: this is the case of the Cartesian cell of Fig. 1(b), and the cut-cells in Fig. 3(a) and (b).

In the case where the north face is solid and thus u;;,; does not exist (case where ()i‘j+1 = 0, for the cut-cells of Fig. 3(c)-
(f)), these formulae have to be modified for taking into account the boundary conditions in the fashion of the ghost fluid meth-

od for elliptic equations [18]. For example, on the north face:

~ ib.e ibw ou
/Flbeurlbw @ dx <AX + Axl+1‘l>6y lj (55)
with the one-sided differential quotient:
ouf _u(x) 56)
dy ij 2 uAyJ

Note that in (55) the integration areas Ax”je and Ax‘b‘” on the solid face are yet to be defined.
For completeness, we mention that the dlscretlzatlon of the viscous term has a five-point structure, and in the case where
6¥..; = 0, it has a form analogous to (39):

1J+

Vu - ndS 2 Kw(i, )i + Ke(i,j) i1+ Ke(i,j)uij + Ks(i, )1 + S (37)
I

with:
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0L.Ay: 0! . Ay
Kw(ij) = L2120 e 71 1) 58a
w(i,j) Vi/Ay, e(i,j) = Vi /Ay, (58a)
L. G”Ax + 07 Ax;
Ks(i,j) = w (58b)
Lj y] + ij—1 yj—l
2 2
o“ Ay oY Ay Ax! 1be +Axlbw
Ke(i,j) = — () & _ () s (i) = — (58¢)
ViJ/ij Vi+1,i/ij 0 Ay]
u u u U ibe ibw
Slbv B 9“ Ay (0 01+]j) ui,b o (01 1j 01J) ulb AX + AX,+U (X' ylb) (58d)
J Vi+lj/A}/j i+1j i,i/ij' ij 1 ()u Ay] Y ij
We observe that the discretization is symmetric (i.e. Kw(i + 1,j) = Kg(i,j)), as it is the case for the MAC method.
For completing our discretization of the viscous terms, we have to define the values of the integration areas Ax”’e and

Axii}"’l for the shear stress flux at the boundary (55). These values will be determined independently for each type of cut-cells
in Fig. 6, by requiring that the shear stress fluxes at the immersed boundary correspond to the discretization of the shear part
of the hydrodynamic forces (9). This is equivalent to requiring that total momentum be discretely conserved on the LS-STAG

mesh.

3.4.3. Discrete conservation of total momentum and computation of hydrodynamic forces

As done in Section 3.3 for the kinetic energy, the total momentum P(t) = [,x #dV is discretized with the trapezoidal rule
to give:
P(t) = P'(t) = 1" MU + 1" MPU®, (59)

where 1 is the constant vector. The conservation equation for P(t) is obtained by multiplication of the semi-discrete scheme
(23) with vector 1:
det_ [TC[UU + 17 — (17gP — 1Ty (KU + S™)] (60)
- - ).
This expression is the semi-discrete version of Eq. (8b): the quadratic terms in the RHS correspond to the summation of the
convective, pressure and viscous fluxes from all control volumes. Since the property of local conservativity of the fluxes holds
at fluid faces, all terms cancel out except those appearing at solid boundary faces of the cut-cells. These remaining terms
should correspond to the forces that act on the immersed boundary.

Most relevant to our discussion is the discretization of the viscous fluxes, and thus we will focus on the viscous force: the
LS-STAG method we be qualified to be momentum conserving if the non-zero terms in sum [1"GP — 1"v(KU + S“’"’)} correspond
to the discretization of the hydrodynamic force (9). This discretization is obtained by approximating the surface integrals in
(9b) and (9a), respectively, as:

Fl; = Z [nxAs]l,/ (pu 8_2' > - quad <—yey ”> (Gla)
ij

Cut-cells®;;
> . (61b)
ij

Fie Y —vQuad? (g ) + [myAS] (p,J g;’
Cut-cells®;;
In these equations, the quadrature of the pressure and normal stress term has been performed by observing that these terms
are constant in the cut-cells and using the midpoint rule; as a result the same formula is valid for all types of cut-cells. In
contrast, the quadrature of the shear stresses (denoted Quad'b) has to be adapted to each type of cut-cells. This quadrature,
based on the location of the shear stresses in Fig. 6 and the trapezmdal rule, is fully described in Appendix B. For our discus-
sion, it is relevant to note that the portion of drag and lift acting on the solid part of the trapezoidal cut-cell of Fig. 6(b) is,
respectively:

h U m _ a_u VAX ou %
R, = (00— 0)Ay, {pu | T2 |, T, (62a)
v((){ = 0'-‘->Ay‘
n i-1j — Yij ) |ov ov , _ov
F, o 5 [Ox oy el + AX; | pij v@y ”}. (62b)

Now, let us examine closely the viscous part of the global momentum equation (60), whose contribution in the x direction
that reads:
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Tap 4T by o ou] _ ou
[17GP —1TV(KU + S, = 3 /rﬁj {p Ve lec-nds /riujvayey nds, (63)

CVs Q:fj

should correspond to the drag force Fi’ given by (61a). The easiest part to inspect is the contribution of the normal stresses,
since a unique formula (Eqgs. (30) and (50)) is valid for these terms in all computational cells:

ou
> Ay, <pi+l.j —Pu_v{a })
ij

Vsl
After reindexation for making appear a sum on the computational cells, we observe that pressure and normal stresses cancel
out in fluid cells such that 6; = 6{" ,; = 1, and only the following terms in the cut-cells do remain:

i-1j
u
ij

P
(9;171.]' - %) Ay; <pij - V&

_ou
ox

i1

Cut-cells Q;;

This sum is exactly the contribution of the normal stresses to the discrete drag force (61a). A similar inspection holds for the
lift component (61b), ensuring thus that the normal stress contribution to the total momentum budget is recovered.

For the shear stress contribution, the fluxes at all fluid faces cancel out and only fluxes at the immersed boundary remains
in sum (63), their exact expression depending on the type of cut-cell. On the solid part F}'J’.'W U F?}‘e of cut-cell ©;; in Fig. 2, we
use Eq. (55) for writing the shear stress contribution as:

J

After comparison with the drag force (62a), we are able to unambiguously determine the integration areas of the shear stress
as:

ibeOU
+ Axi?‘e@

i-1j

. . 1
b, b,
MY = ARl = A (64)
A similar inspection for the other type of cut-cells gives the values reported in Table 2 for the shear stress flux
Jpive, pow Ou/dy dx. Similar values can be deduced for the shear stress flux in the y-momentum equation fiins »s dv/9xdy.
ij i+14 ij ije1

This will finish the description of what will be subsequently be called the “original” LS-STAG discretization of the viscous
stress.

3.4.4. A “complete” discretization of the shear stresses based on the strict conservation of total momentum

However, if we further investigate the correspondence between the shear stress fluxes at the immersed boundary in the
momentum equation and the discrete shear force (61), one may notice slight discrepancies. For example in the trapezoidal
cut-cell of Fig. 6(b), the shear stress fluxes at the immersed boundary that appear in the momentum equation for u;j and v;;_;
are, respectively:

au

iy Oy

2

B VAX; |Ou
ay

} and O. (65)
ij

If we compare these terms with the shear force in (62a) and (62b), we observe that the following part is missing from the
momentum equation for v;; ;:
"(H?—u - 95;‘) Ay {87/ ov

2 x|y Ox

} : (66)
ij

Note that the contribution of this term to the global lift force should be small, since it vanishes when the solid face is hor-
izontal (0}‘71 i= H}fj>. Nevertheless, the “original” LS-STAG method does not completely conserve the global momentum. The

Table 2
Integration areas for the shear stress flux (55) on the solid part of the cut-cell of Fig. 6. The integration areas for the other cut-cells of Fig. 3 can be easily deduced
from the ones displayed.

Type of cut-cell AX?}'W AX;I},e
(a) Northeast pentagonal cell 0 (1 _ 9113) AX;
(b) North trapezoidal cell 1Ax; 1 Ax;

(c) Northwest triangular cell %ij,le,v %9671 Ax;
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reason is that for building this discretization we have assumed that the shear stress discretization yields a five-point stencil,
and thus the contribution of terms dv/9x|; ,; and dv/9x|;; should be ignored in the stencil for v;; ;.

An alternate version of the LS-STAG method would be to retain terms such as (66) in the discretization. The difficulty is
now to compute the new terms that appear in the discrete momentum equations. For example, the term 9v/0x|;; in Fig. 6(b)
may only be computed if we know the type of the neighboring cut-cell Q;.+;. If Q;,4; is pentagonal, as in Fig. 4(d), then the
shear stress can be computed with the one-sided formula:

ov

Visaj — U<X}57J’j>
X '

1 v
5071 ;A1

i+1,j

(67)

1
The only other possibility is that ;1 be a pentagonal cell, as in Fig. 4(a). In this case, we cannot use formula (67). Instead,
we simply set dv/9x|;; = 0, as it is verified when the solid face is horizontal.

This alternate version, the we will subsequently call the “complete” LS-STAG method, has the ability to be strictly
momentum conserving. However, compared to the “original” LS-STAG method, the presence of the supplementary shear
stress terms on the solid boundary severely complicates the coding of the method, and it also enlarges the size of the stencil.
In the computations presented in the next section, these terms will be handled with an explicit time-stepping. These com-
putations will also prove that the “complete” LS-STAG method shows only a marginal improvement over the “original”
method, and we recommend thus the latter method.

3.5. Time stepping method and solution of the linear systems

The time integration of the differential algebraic system (18) and (23) is performed with a semi-implicit projection meth-
od based on the Adams-Bashforth/second-order backward differentiation formula (AB/BDF 2) scheme. This projection
scheme is defined by the following two steps:

30 —4U" + U™!
M 2At

where U is a prediction of the velocity at time t,.1 = (n + 1)At, then:

+2C[U"U" - c[U™ U™ — D"P" — vkU =0, (68)

n+l _ 17
%M% —D'(P" —P") =0, (69a)

DUnH + Uib‘nﬂ =0. (69b)

Numerical tests in [6] shows that this scheme is O(At?) accurate for both velocity and pressure.
The projection step (69) leads to solving following Poisson equation for the pressure potential & = 2At(P""' — P")/3:

A® =DU +UP™ | A= -DM D", (70)

which is a symmetric linear system whose five-point stencil reads:

2
0 Ay:
A(i,j) = M7 Aw(i,j) = Ae(i — 1,j), (71a)
3 Vij+3Vin,
N 7
An(ij) = m7 As(i,j) =An(i,j - 1), (71b)
Ap(i,j) = —Ae(i,j) — Aw(i.J) — An(i,)) — As(i,)). (71c)

In the case of a Cartesian fluid cell, the usual pressure equation of the MAC method is recovered. We mention that the pres-
sure equation (70) is valid in the whole computational domain, fluid or solid cells alike, and in the latter cells the linear sys-
tem reads:

0 x &;; =0, (72)

which is a consequence of the fact that the pressure is defined up to an additive constant. In order to alleviate this indeter-
mination in actual computations, we add to the diagonal coefficient Ap(i,j) a small real constant 6 whose magnitude has the
order of the machine roundoff, and we solve (70) in the whole computational domain with a standard solver for elliptic
equations on Cartesian grids. In the computations we present next, we have used the black-box multigrid/BiCGSTAB solver
of van Kan et al. [62]. No modifications of the solver had to be undertaken for taking the immersed boundary into account,
since we did not observe a significant loss in the performance of the solver when compared to Cartesian computations. For
the simulations presented in the following sections, the pressure equation was typically solved in 2-3 iterations with this
solver.
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The prediction step (68) amounts to solving a Helmholtz equation for U, which is performed by the same black-box mul-
tigrid/BiCGSTAB solver. This linear system is easier to solve than the pressure equation since its diagonal dominance in-
creases with the Reynolds number.

4. Numerical results
4.1. Taylor-Couette flow

First, the spatial accuracy of the LS-STAG method is assessed on the Taylor-Couette flow between two concentric circular
cylinders, as described in Fig. 7(left). The flow dynamics is governed by the Taylor number Ta, which is the ratio between the
centrifugal force and the viscous force:

_ ()R, ~Ry)’

Ta 2

(73)

Below the stability threshold Ta. = 1712 [23], the steady stable solution is purely orthoradial, such that its Cartesian com-

ponents read for r = \/(x —x)? 4+ (¥ —y)® € [Ri,Ra:

RZ

Uex(x,y) = -K (r—zz - 1) WEN/AB (74a)

RZ

vex(x’y) _K<T—22_ ])(X—Xc), (74b)
2 R

pex(xvy) = Kz (227?2R§ 10gr2>, (74C)

oR?
where K = Rgf;e%.

In order to build the level-set function ¢(x,y) that represents the fluid domain €, we have used the Constructive Solid
Geometry (CSG) method for constructing complex domains out of basic geometries such as circles, hyperplanes and spheres,
which are sufficiently simple for having an analytical expression for their level-set function [25,47]. The boolean CSG oper-
ations on basic geometries such as intersection, union or complementary part can then be expressed as algebraic operations
on their level-set functions [47]. For example, let Q; and Q, be the inner region of cylinders I'y and I';, whose level-set func-
tion is, respectively:

$1(x,y) =Ry -, (75a)
$r(x,y) =Ry —1. (75b)

Then, the fluid domain of the Taylor-Couette geometry can be constructed as Qf = Q, \ Q1, and its level-set function is sim-
ply d)(xvy) = max(¢2(x,y), _(j)] (va))

The computational domain is a square of side length 10R;, covered with a uniform mesh of N square computational cells
of size h in each direction (see Fig. 7(right)). The center of the concentric cylinders is set at x. = 0.013, y. = 0.023 slightly off
the center of the computational domain, such as it never corresponds to a corner or centroid of a computational cell. Thus,
the numerical error we measure are free of any superconvergence effects, since the natural symmetries of the meshes and

35 0 5

Fig. 7. Geometry and computational domain for the Taylor-Couette flow. At left, the fluid domain € is confined between two concentric cylinders I'; and
I, of center (x.,y.), radius Ry and R, = 4R, respectively, where only the inner cylinder Iy moves with the angular velocity w. At right, the LS-STAG mesh for
R; =1 and N = 50 cells in each direction.
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the computational solution are broken. For the flow at Ta = 1000, we have compared the results of the two variants of the LS-
STAG method (original and complete, see Section 3.4) with the so-called staircase method, which corresponds to a stepwise
approximation of complex geometries with Cartesian cells. This last method is easily obtained from our numerical code by
imposing the cell-face fraction ratios to be equal to 1 in the cut-cells, while the discretization in the Cartesian cells is un-
changed. We will see that even though the cut-cells represent only a small fraction of the computational cells, these mod-
ifications will greatly affect the numerical solution in the whole fluid domain.

For the streamwise velocity u, we have measured the L., spatial error up to the cut-cells, i.e.:

En(t) = 2%
ij

1
Ui — Uex (xf.,y; +3 H?Jij> ‘ (76)

whereas for the pressure, due to the indefinite location of the pressure in the cut-cells, we have reported the L., error in the
Cartesian cells only. Fig. 8(left) shows the error for the velocity measured on 90% of the fluid cells away from the immersed
boundaries. The two LS-STAG variants shows a similar second-order accuracy, much better than the first-order accuracy of
the staircase method. When the error of the LS-STAG method is measured on the whole computational domain (Fig. 8(right)),
the L., error is slightly higher, showing that maximal error occurs in the vicinity of the cut-cells, and the order of accuracy
drops to being superlinear only. This is certainly an effect of the piecewise constant approximation of the normal stresses
and the pressure in the cut-cells. A similar trend is observed for the L., error of the pressure displayed in Fig. 9. Fig. 10 shows
the pointwise error at mesh points along the horizontal radius, for x € [Ry, Ry]. Firstly, we observe that the crude treatment of
the immersed boundaries for the staircase method pollutes the solution in the whole fluid domain, whereas for the LS-STAG
methods the largest errors stay confined to the vicinity of the immersed boundaries, and most notably to the inner moving
cylinder I'y. Secondly, we observe that the complete variant of the LS-STAG method (which conserves global momentum)
gives only a marginal improvement in terms of pointwise accuracy.

4.2. Flow past a circular cylinder

The robustness of the LS-STAG method and its ability to compute unsteady flows at higher Reynolds number is now eval-
uated on the flow past a circular cylinder in a free-stream. The Reynolds number Re is based on the free-stream velocity U,,
and the diameter D of the domain. The flow configuration is described in Fig. 11(left). In all our simulations, the upstream
boundary is set at the distance X,, = 8D from the obstacle, the outflow boundary at distance X4 = 15D, and the blockage ratio
D/Ais equal to 1/12. Our previous studies [7,8] have shown that this computational domain was sufficiently wide for obtain-
ing results that are independent of the domain size. In order to make a grid refinement study, we used a sequence of non-
uniform meshes whose salient properties are summarized in Table 3. All meshes use a similar block uniform grid of cell size
h/D in the vicinity of the cylinder, as shown in Fig. 11(right). Our simulations with mesh M4 were found to give accurate
results for the range of Reynolds number [40 — 1000] we considered. The other meshes range from very coarse (mesh M1
with only 12 cut-cells around the immersed boundary, which is used for the steady flow at Re = 40) to extremely fine (mesh
M5 with more than 400 cut-cells). This last mesh is mainly used for validating the results obtained on coarser meshes. Table
3 also reports the proportion of the various type of computational cells (solid, Cartesian or cut-cells) found in these meshes.
We observe that the proportion of solid cells is very low and diminishes as the meshes gets bigger. Thus, the additional CPU
and memory costs that their treatment entails is negligible compared to a body-fitted method. In the meshes we used for the

3 / 2
o€ g S
107 ot 100
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_4 @ LS-STAG, original | —4
10 'LS=STAG, complete | 10
==21™ order slope
_ =22 order slope —
107 B = : 0 107 2 - 0
10 10 10 10 10 10
h h

Fig. 8. L., norm of the error for the streamwise velocity u versus grid size h = % At left: on 90% of the fluid domain; at right: on the whole fluid domain.
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Fig. 9. L, norm of the error for pressure p versus grid size h = 1%, At left: on 65% of the fluid domain; at right on 90% of fluid domain.
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Fig. 11. Computational domain and grid for the flow past a circular cylinder.

Taylor-Couette flow, the proportion of cut-cells was similar, while the proportion of solid cells was around 50% whatever the
size of the mesh. At last, Table 4 shows that the cut-cells almost have an equal proportion of triangular, trapezoidal and pen-
tagonal cells: thus, an accurate discretization should be performed for all cells in Fig. 3.
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Table 3

Salient properties of the meshes used for the circular cylinder flow. The percentage of the various type of cells with respect to their total number is given in
brackets. The values of the time step are valid for all computations of Sections 4.2 and 4.3.

Mesh Ny x Ny, h/D AtU, /D Type of cells

Number of cells Cartesian cells Solid cells Cut-cells
M1 36 x 34 0.32 10-2 1224 1208 (98.7%) 4 (0.3%) 12 (1.0%)
M2 74 % 65 0.16 102 4810 4767 (99.1%) 19 (0.4%) 24 (0.5%)
M3 150 x 130 0.08 10-2 19,500 19,350 (99.2%) 100 (0.5%) 50 (0.3%)
M4 300 x 260 0.04 1022 78,000 77,460 (99.3%) 440 (0.6%) 100 (0.1%)
M5 550 x 350 0.01 2 x1073b 192,500 184,452 (95.8%) 7644 (4.0%) 404 (0.2%)

T At=5x 10’3D/U,>C for the computations at Re = 1000.

> At =1072D/U.. during the initial transients (tU.,/D € [0, 1)) for the computations at Re = 1000.

Table 4

Inventory of the three basic types of cut-cells found in the Taylor-Couette (T-C) and circular cylinder (C-C) meshes, and their percentage with respect to the

total number of cut-cells.

Simulation Total number of cut-cells Type cut-cells

Triangular cells Trapezoidal cells Pentagonal cells
T-C, N = 100 400 116 (29.0%) 168 (42.0%) 116 (29.0%)
T-C, N =300 1192 344 (28.9%) 504 (42.3%) 344 (28.9%)
C-C, M2 24 4 (16.7%) 12 (50.0%) 8 (33.3%)
C-C, M4 100 28 (28.0%) 40 (40.0%) 32 (32.0%)

For comparing our results on the circular cylinder flow, we have selected well-established numerical investigations con-
ducted with boundary-fitted [27,5,26], IB [35] and cut-cell methods [40]. Experimental results are taken from the mono-
graph by Zdravkovich [67]. Following the derivation of the CFL condition on unstructured mesh in [4], the CFL number in
fluid cell Q;; is:

At

v, (77)

CFLij = | (Uig) " + (~Ui1y) " + (i) " + (= Vig-1) " + (U&J)?
where (-)* = max(-,0). This condition reduces to the conventional CFL condition in Cartesian fluid cells. For the values of the
time step given in Table 3, all computations were performed with a maximal value of CFL equal to 0.5. We have observed that
this value is not obtained in a cut-cell, but rather in a Cartesian cell away from the wake region. This shows that the occur-
rence of small cut-cells in the mesh does not hamper the stability properties of our semi-implicit time-stepping.

First, we performed a grid convergence study of the various methods (staircase, LS-STAG and LS-STAG complete) for the
steady flow at Re = 40. For both variants of the LS-STAG method, the forces were computed with the same quadrature (Eq.
(61)). Fig. 12 shows the spatial convergence of the drag coefficient Cp = F,/ 1 pU% and the length of the recirculation bubble
L. /D. The staircase method gives very inaccurate results on the coarser meshes (no recirculation zone is observed on mesh
M1), whereas the LS-STAG methods gives acceptable results for all meshes. As shown in Table 5, the results of both LS-STAG
methods compare well with established results from the literature (which are typically in the range [1.50 — 1.54]) and, once
again, the difference between the two variants is undistinguishable. From now on, we will only report computations per-
formed with the original LS-STAG method.

Unsteady flows at Re = 100, 200 and 1000 have been computed on the M4 and M5 meshes. For breaking the symmetry of
the flow and efficiently triggering the vortex shedding, we use as initial condition a discontinuous flow field equal to U, in
the upper half of the domain, and 0 in the lower half. The flow reaches an asymptotically periodic state at t = 50D/U., then
we start computing the force coefficients at each time step until t = 350D/U... The Strouhal number St is computed as the
first harmonic of the power spectrum of the lift coefficient, with a frequency resolution of £1.67 x 10> since the length of
the time signal is equal to 300 units. Tables 6 and 7 give salient results computed with the LS-STAG and staircase method. On
the M4 mesh for Re = 100 and 200 and on the M5 mesh for Re = 1000, the LS-STAG method gives excellent agreement with
the published results. It is also quite remarkable to observe that the staircase method gives marginally acceptable results,
even for Re = 1000. This is certainly due to the fact that the staircase method inherits the conservation and stability prop-
erties of the LS-STAG method, and only the treatment of the immersed boundary differs.

4.3. Flow past a circular cylinder with forced oscillatory rotations

For assessing the validity of our treatment of non-homogeneous boundary conditions, we have compute the flow past a
circular cylinder with forced rotary oscillations given by the angular velocity:
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Fig. 12. Drag coefficient and recirculation bubble length for the steady flow at Re = 40 computed with the various meshes of Table 3.

Table 5
Results for the flow at Re = 40 obtained on the two finest meshes and comparison with established results from the literature.
Lw/D Cp

M4, original 2.300 1.500
M4, complete 2.300 1.500
M4, staircase 2.101 1.527
M5, original 2.299 1.508
M5, complete 2.299 1.508
M5, staircase 2.226 1.559
Experiments [67] - 1.48-1.70
Bergmann et al. [5] 2.26 1.682
Henderson [27] - 1.545
He et al. [26] - 1.505
Linnick and Fasel [35] 2.23 1.54
Mittal et al. [40] - 1.53

Table 6

Comparison of time averaged drag coefficient Cp and corresponding oscillation amplitude +ACp with established results from the literature.
Re 100 200 1000
M4 1.322 £+ 0.009 1.3324+0.044 1.493 +0.227
M5 1.317 £ 0.009 1.327 £0.045 1.530 +0.229
M4, staircase 1.323 +0.009 1.346 4+ 0.044 1.610+0.198
Experiments [67] 1.21-1.41 - -
Bergmann et al. [5] 1.410 1.390 1.505
Henderson [27] 1.350 1.341 1.509
He et al. [26] 1.353 1.356 1.519
Linnick and Fasel [35] 1.34 +0.009 1.34 +£0.044 -
Mittal et al. [40] 1.35 - 1.45

w(t) = we sin <2n5et

00

0)
D ,

(78)

where the two forcing parameters